Abstract:
Methods and apparatuses are provided for identifying and selectively controlling reverse-noise contribution on a per-access terminal basis. In an embodiment, an access node provides wireless service to access terminals, and measures reverse noise rise (RNR) during at least one turn of a round-robin process involving access terminals taking turns transmitting data or taking turns not transmitting data. The access node thereby determines a respective RNR contribution of at least one access terminal based at least on the measurement of RNR taken during the access terminals' turns. A high-contributor set of one or more access terminals is identified and then instructed to reduce reverse-link transmission power.
Abstract:
Disclosed are methods for determining which page attempt to shed. In accordance with these methods, when a page attempt from a first sequence directed to a first access terminal (AT) contends with a page attempt from a second sequence directed to a second AT for transmission over the air interface of a RAN, the RAN determines which sequence has been shed to a greater extent. The RAN then transmits the page attempt from the sequence that has been shed to a greater extent and sheds the page attempt from the sequence that has been shed to a lesser extent. The methods advantageously help to avoid one sequence of page attempts being disproportionately shed.
Abstract:
A method and system is disclosed for dynamic setpoint adjustment during extended frame decoding. In accordance with an example embodiment, upon determining that a frame transmission from an access terminal has not been successfully decoded during a nominal frame period, a base station will implement a gradual increase of the setpoint in small steps over the course of an extended decoding interval. Beginning at the nominal termination target of an nominal frame period that failed to yield a successfully decoded frame, the setpoint is increased in a series of intermediate setpoint steps during a corresponding series of successive, intermediate decoding intervals which add up to the total duration of the extended decoding interval. Decoding during intermediate decoding intervals continues until either the virtual termination target is reached or successful decoding, whichever occurs first.
Abstract:
A wireless communication device determines a latitude indicator, longitude indicator, and received signal strength for its current location. The devices processes the latitude indicator, longitude indicator, and received signal strength to estimate its elevation at the location. The device also processes its handover history to determine a handover probability factor. The device then processes the estimated elevation and handover probability factor to estimate if the device is located in a building above an elevation level. If the estimate indicates that the device is located within the building above the elevation level, then the device modifies a handover parameter to inhibit handover attempts.
Abstract:
A method and system is disclosed for synchronization among access terminals of periodic computations of time-averaged measures of noise-indication messages received from the base station. An access terminal in a wireless communication system that includes a base station will set a reference time for synchronization with at least one other access terminal of periodic computations of time-averaged measures of noise-indication messages received from the base station. The access terminal will then synchronize a start time of periodic intervals for computing time-averaged measures of periodic noise-indication messages received from the base station with the reference time, and determine rates for transmission of data to the base station based at least on the time-averaged measures computed for the periodic intervals. The access terminal will the transmit data to the base station at the determined rates.
Abstract:
A communication system provides a wireless communication session to a user device over a forward link and a reverse link. A wireless network determines that drop notification and protection is effective for the session and detects session loss on the reverse link. The network transfers a session loss indication to the user device to over the forward link and transfers a protection notice to the other communication end-point. The user device receives the session loss indication over the forward link and notifies the user. The user device transfers recovery probes over the reverse link. The network detects session recovery on the reverse link and transfers a session recovery indication to the user device over the forward link. The network transfers a recovery notice to the communication end-point. The user device receives the session recovery indication over the forward link and notifies the user of the session recovery.
Abstract:
Disclosed herein is a method for repeat paging in a wireless communication system. In accordance with the method, a RAN controller will send a repeat-paging directive to a plurality of BTSs to cause each BTS to begin broadcast of a series of page messages destined to a target mobile station. While transmitting the series, one of the BTSs will then receive from the mobile station a page response, and the BTS will responsively provide to the RAN controller a notification of the page response. In response to receipt of the notification, the RAN controller will then send a paging-stop directive to at least each other BTS of the plurality, and each BTS that receives the paging-stop directive will responsively discontinue broadcasting the series of page messages before completing broadcast of the entire series of page messages, thereby helping to conserve air interface resources.
Abstract:
A wireless communication device (WCD) may be able to acquire wireless service from preferred wireless coverage areas that are managed by the WCD's service provider. In some cases, the WCD may instead use wireless service from non-preferred wireless coverage areas of the service provider's roaming partners. In order to save roaming fees, the service provider's RAN may determine when the WCD is likely to roam to a non-preferred wireless coverage area. In response to this determination, the RAN may transmit a redirect message to the WCD, causing the WCD to switch from one preferred wireless coverage area to another preferred wireless coverage area. In some situations, the RAN may transmit such a redirect message because the WCD has reported that it has a low remaining battery life.
Abstract:
What is disclosed is a method of operating a wireless communication system which includes a base station and a wireless communication device in communication over a voice communication link and a data communication link. The method includes, in the wireless communication device, receiving a first page over the voice communication link. The method also includes, in the wireless communication device, entering into a data-only communication mode over the data communication link, where the voice communication link is not monitored by the wireless communication device when in the data-only communication mode, and transferring a page halt message to the base station upon entry into the data-only communication mode, where the page halt message indicates the wireless communication device is halting receipt of further pages over the voice communication link. The method also includes, in the base station, if the page halt message has been received and upon receipt of a second page for delivery to the wireless communication device, transferring the second page over the data communication link.
Abstract:
An RF communication system comprises RF circuitry, access circuitry, and control circuitry. The RF circuitry receives reverse packets from users over reverse RF links. The access circuitry is operationally coupled to the RF circuitry and transfers the reverse packets over a reverse network link. The control circuitry is operationally coupled to the access circuitry and inhibits the transfer of a set of the reverse packets over the reverse network link in response to a reverse overload condition on the reverse network link. The inhibited set of the reverse packets are from the users having a lowest level of reverse packet loss on the reverse RF links.