Abstract:
A driving circuit for driving loads includes a switch circuit, a transformer, a current sensing circuit, and an inverter controller. The switch circuit and the transformer are used for converting a DC electric power to an AC electric power so as to energize the loads. The current sensing circuit coupled to the loads generates a feedback current signal indicative of a current flowing through the loads. The inverter controller includes a switch drive circuit, a current regulation circuit receiving the feedback current signal, and a mode controller circuit. The switch drive circuit controls the switch circuit so as to adjust power delivered to the primary winding of the transformer in accordance with the feedback current signal. The mode controller disables the switch circuit through the switch drive circuit if the external signal is in an absence state for a predetermined period.
Abstract:
A circuit structure for LCD backlight is disclosed in the present invention. The circuit structure includes an inverter topology, a current balance circuit, and a plurality of loads. The current balance circuit is coupled to the plurality of loads and capable of balancing current of N loads by using N/2-1 balance chokes. The circuit structure may further include a protection circuit which is coupled to the low voltage sides of the plurality of loads. The protection circuit is capable of sensing lamp voltages and providing a feedback signal to a controller. Furthermore, the protection circuit is composed of count-reduced and cost-competitive electronic elements.
Abstract:
A method according to one embodiment may include supplying power to plurality of External Electrode Fluorescent Lamps (EEFLs). The method of this embodiment may also include generating signals proportional to the voltage of each EEFL. The method of this embodiment may also include generating a feedback signal indicative of the state of one or more of the plurality of EEFLs based on, at least in part, the value of at least one signal proportional to the voltage of each EEFL. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
The present invention provides an inverter controller comprising a drive circuit that generates a plurality of switch drive signals for inverter applications. In some exemplary embodiments, the drive circuit operates by reversing the command level of an error signal. In other embodiments, the drive circuit operates by using a half period of a sawtooth signal. In still other embodiments, the drive circuit operates by using a double period opposite shifting pulses method. The present invention also provides a PWM signal generator circuit that generates periodic PWM switch drive signals symmetrical to the minimum or maximum of a sawtooth waveform.
Abstract:
An artificial cervical vertebrae composite joint is composed of two upper and lower fixing members disposed vertically symmetrically, a cervical vertebrae body member, and two connection members, the cervical vertebrae body member being connected between the fixing members through the connection members. The fixing members each have an L shape and comprise a front wing part and a base part. A locking screw hole is formed in the front wing part, and a skidproof groove provided with an inverted tooth and a protrusion is disposed on a middle portion of the base part. A bone grafting hole is transversely disposed through a middle portion of the cervical vertebrae body member, and two cavities are disposed on both upper and lower sides of the cervical vertebrae body member at an axial center of the cervical vertebrae body member to mount the connection members. The connection member has one end mounted in the cavity by means of a fixing ring, and another end connected with the fixing member to form a stable sliding-trough type ball-and-socket joint.
Abstract:
An artificial cervical vertebrae composite joint is composed of two upper and lower fixing members disposed vertically symmetrically, a cervical vertebrae body member, and two connection members, the cervical vertebrae body member being connected between the fixing members through the connection members. The fixing members each have an L shape and comprise a front wing part and a base part. A locking screw hole is formed in the front wing part, and a skidproof groove provided with an inverted tooth and a protrusion is disposed on a middle portion of the base part. A bone grafting hole is transversely disposed through a middle portion of the cervical vertebrae body member, and two cavities are disposed on both upper and lower sides of the cervical vertebrae body member at an axial center of the cervical vertebrae body member to mount the connection members. The connection member has one end mounted in the cavity by means of a fixing ring, and another end connected with the fixing member to form a stable sliding-trough type ball-and-socket joint.
Abstract:
A method according to one embodiment may include supplying ignition power and steady state power to at least one lamp. The method of this embodiment may also include receiving, during an ignition period of said lamp, a feedback signal indicative of power supplied to said lamp; comparing said feedback signal to a signal that is approximately equal to a signal indicative of steady state power; and maintaining a supply of ignition power to said lamp while said feedback signal remains below said signal indicative of said steady state power. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
The present invention provides a driving circuit for driving a light source. The driving circuit includes a serial-arranged transformers system having multiple primary windings and secondary windings; a first switch conducting current though a first path and a second switch conducting current though a second path. The first path is a first set of primary windings connected in series and the second path is a second set of primary windings connected in series and the first set of primary transformer windings and the second set of primary transformer windings form the dual primary windings of the transformers respectively. Based on the conduction of each switch, a DC voltage source supplies power to the primary windings of the transformers, which in turn powers on the light source connected to the secondary windings of the transformers.
Abstract:
A method according to one embodiment may include supplying ignition power and steady state power to at least one lamp. The method of this embodiment may also include receiving, during an ignition period of said lamp, a feedback signal indicative of power supplied to said lamp; comparing said feedback signal to a signal that is approximately equal to a signal indicative of steady state power; and maintaining a supply of ignition power to said lamp while said feedback signal remains below said signal indicative of said steady state power. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.