Abstract:
A panel module includes a substrate and a transparent electrode layer disposed on the substrate. The inner surface of the substrate has a plurality of touch-control segments. The transparent electrode layer of each touch-control segment has a coupling electrode, a plurality of first electrodes, and a plurality of second electrodes, wherein the coupling electrode, the first electrodes, and the second electrodes are arranged in an interval and insulting with each other. Each coupling electrode is separating the corresponding touch-control segment into a first-side region and a second-side region, wherein the first-side region and the second-side region are arranged on two opposite sides of the coupling electrode, the first electrodes are disposed on the first-side region, and the second electrodes are disposed on the second-side region. A portion of the transparent electrode layer disposed on any two adjacent touch-control segments are configured in a mirror symmetry arrangement.
Abstract:
The present invention provides a data accessing system and a data accessing method. The method comprises: separately storing a (N×M)-bit digital data in L banks of a data storage module; utilizing a register module of a data accessing interface module to transmit data of a bank for L times in sequence, and to receive and latch the digital data included by a bank from the data storage module when transmitting data each time, until the (N×M)-bit digital data is totally latched in the register module; and utilizing a multiplex output module of the data accessing interface module to continuously select a M-bit digital data from the (N×M)-bit digital data registered in the register module, and input the M-bit digital data to a data retrieving device via M data transmission lines.
Abstract:
A capacitance difference detecting circuit includes a control circuit, for generating a control signal according to a first voltage and a second voltage; a first capacitor to be detected; a second capacitor to be detected; a first constant capacitor, having a terminal coupled to the first terminal of the first capacitor to be detected and the first input terminal; a second constant capacitor, having a terminal coupled to the first terminal of the second capacitor to be detected and the second input terminal; a voltage control unit, cooperating with the first capacitor to be detected, the second capacitor to be detected, the first constant capacitor and the second constant capacitor to control the first voltage and the second voltage. The voltage control unit is an adjustable capacitor and a capacitance value of the adjustable capacitor is controlled by the control signal.
Abstract:
A signal level shifting circuit, including an input stage circuit and an output signal latching circuit. The input stage circuit receives an input signal, wherein a voltage level of the input signal falls within a first predetermined voltage range. The output signal latching circuit is cascoded with the input stage circuit, and includes: a latching circuit for generating an output signal according to the input signal, wherein a voltage level of the output signal falls within a second predetermined voltage range, and the second predetermined voltage range is different from the first predetermined voltage range; and an activating circuit, coupled to the latching circuit, for selectively enabling or disabling the latching circuit, wherein when a level transition appears to the input signal, the activating circuit disables the latching circuit.
Abstract:
The present invention relates to an oscillating apparatus. The oscillating apparatus includes a biasing circuit, a multi-vibrator, a detecting circuit, and a selecting circuit. The biasing circuit is for generating a bias signal, wherein the biasing circuit includes a connecting port for using an impedance device to control an oscillating frequency or for directly connecting to external clock source as a reference clock. The multi-vibrator coupled to the biasing circuit for generating the oscillating frequency according to the quantity of the biasing signal. The detecting circuit coupled to the connecting port for generating a detecting signal whether the connecting port is coupled to the impedance device or the external clock source. The selecting circuit includes an AND gate coupled to the multi-vibrator and the selection signal and an OR gate coupled to the AND gate and the connecting port.
Abstract:
The present invention discloses a multi-function circuit module having voltage level shifting function and data latching function via switching a plurality of switch elements. The multi-function circuit module includes a first circuit module, a fourth switch element, and a fifth switch module, wherein the first circuit module further includes a first switch module, a second switch module, and a third switch module. The multi-function circuit module can substantially reduce the circuit layout area. For example, when the multi-function circuit module of the present invention is applied in a source driving chip circuit, the multi-function circuit module can replace the original low-to-high voltage level shifting circuit and data latching circuit, so as to attain the purpose of reducing the chip area.
Abstract:
A touch input system includes a touch panel, configured to transmit an uplink signal; and an active stylus, configured to analyze the uplink signal, synchronize timing and bi-directionally communicate with the touch panel according to the uplink signal; wherein the uplink signal includes a preamble, for synchronizing the timing; a digital data, for bi-directionally communicating between the active stylus and the touch panel; and a cyclic redundancy check, for executing an error check and an error correction for data.
Abstract:
A touch control device and a stylus are provided. The stylus includes a transceiver and a controller. The controller generates a plurality of data items based on a request signal received by the transceiver, and generates at least one status data signal in each data item according to at least one operation status of the stylus. In particular, the controller makes the transceiver select at least one selected time period in a plurality of first time periods to transmit the at least one status data signal to a host and transmit at least one normal data signal in at least one other time period other than the at least one selected time period. In particular, a frequency of the at least one status data signal is different from a frequency of the at least one normal data signal.
Abstract:
The present invention provides a mutual capacitive touch panel including a first electrode layer and a second electrode layer. The first electrode layer includes a plurality of electrode strings extending along a first direction. The second electrode layer includes a plurality of electrode strips extending along a second direction, in which one of the electrode strips include a plurality of electrode portions connected in series, one of the electrode portions includes a main part and at least branch part, the main part crosses a corresponding one of the electrode strings, the branch part is connected to a side of the main part, and no branch part exists between the branch part and the outer side of the corresponding electrode string. A spacing between a side of the branch part adjacent to the outer side and the outer side is greater than twice a width of the branch part.
Abstract:
A touch display panel includes a substrate, a plurality of data lines, a plurality of touch sensing lines, and a plurality of gate lines. The data lines are disposed above the substrate, and extend along a first direction. The touch sensing lines are disposed above the substrate, extend along a second direction different from the first direction, and intersect with the data lines. The gate lines are disposed above the substrate, extend along the second direction, and intersect with the data lines. The touch sensing lines or the gate lines and the data lines form touch sensing elements.