Abstract:
A driver is connectable to an external power supply and configured to output a variable driving current for one or more loads, such as LEDs. A low intensity dimming module is operable to divert some or all of the driving current away from the LEDs when a user selects a very low level of light intensity so that the driver has a constant minimum load. The low intensity dimming module prevents performance issues that commonly affect drivers under light load conditions.
Abstract:
A load control device for controlling the amount of power delivered to an electrical load is able to operate in a normal mode and a burst mode. The load control device may comprise a control circuit that activates an inverter circuit during active state periods and deactivates the inverter circuit during inactive state periods. The control circuit may operate in the normal mode to regulate an average magnitude of a load current conducted through the electrical load to be above a minimum rated current. The control circuit may operate in the burst mode to adjust the average magnitude of the load current to be below the minimum rated current. The control circuit may adjust the average magnitude of the load current by adjusting the length of the inactive state periods while holding the length of the active state periods constant.
Abstract:
A light source device includes a semiconductor light source, a light source control section, an optical sensor, a sensor control section, and an intensity adjusting section. The light source control section controls a light quantity per field of light to be emitted from the semiconductor light source, by pulse width modulation. The optical sensor receives the light emitted from the semiconductor light source to acquire a quantity of the received light. The sensor control section controls the optical sensor to detect the light in an exposure period shorter than a minimum pulse width in the pulse width modulation, thereby acquiring the quantity of the received light which is acquired by the optical sensor. The intensity adjusting section adjusts emission intensity of the semiconductor light source on the basis of the quantity of the received light.
Abstract:
An LED control circuit, comprising: a current source including a positive terminal and a negative terminal for providing a current; an LED, which is disposed on a first current path, including an anode and a cathode where the anode is connected to the positive terminal of the current source; an LED monitor including an input terminal and an output terminal where the input terminal is connected to the anode or the cathode of the LED; and a second current path connected in parallel to the first current path; wherein, when the LED monitor detects that the first current meets a target value, if the source current provided by the power source is greater than the target value, a second current divided from the source current flows through the second current path.
Abstract:
A replacement light tube for replacing a fluorescent light tube includes a bulb portion extending between a first end and a second end, the bulb portion comprising a support structure, a plurality of white light emitting diodes (LEDs) and an elongate light-transmissive cover. The support structure has a first surface extending between the first end and the second end. The plurality of LEDs are supported by the first surface and arranged between the first end and the second end. The elongate light-transmissive cover extends between the first end and the second end and over the first surface of the support structure. A first end cap and a second end cap are disposed on the first end and the second end, respectively, each configured to fit with a socket for a fluorescent light tube. A power supply circuit is configured to provide power to the plurality of LEDs. The plurality of LEDs are arranged to emit light through the elongate light-transmissive cover and at least a portion of the power supply circuit is packaged inside at least one of the end caps.
Abstract:
A replacement light tube for replacing a fluorescent light tube includes a bulb portion extending between a first end and a second end, the bulb portion comprising a support structure, a plurality of white light emitting diodes (LEDs) and an elongate light-transmissive cover. The support structure has a first surface extending between the first end and the second end. The plurality of LEDs are supported by the first surface and arranged between the first end and the second end. The elongate light-transmissive cover extends between the first end and the second end and over the first surface of the support structure. A first end cap and a second end cap are disposed on the first end and the second end, respectively, each configured to fit with a socket for a fluorescent light tube. A power supply circuit is configured to provide power to the plurality of LEDs. The plurality of LEDs are arranged to emit light through the elongate light-transmissive cover and at least a portion of the power supply circuit is packaged inside at least one of the end caps.
Abstract:
The present invention relates to a driver device (10) for driving a load (14), in particular a light unit (14) having one or more light emitters, comprising input terminals for receiving an input voltage (V10) from an external power source (12), output terminals for providing electrical power to the load for powering the load (14), a driver stage (16) connected to the input terminals and to the output terminals, wherein the driver stage (16) is adapted to control an input current (I1) drawn from the external power supply (12) and to control the electrical power provided to the output terminal shaving a predefined level, a detection device (24) for measuring at least one electrical parameter (V10, V12, I2, V20) of the driver stage (16) and for determining an input voltage deviation from predefined supply conditions on the basis of the electrical parameter (V10, V12, I2, V20), wherein the driver stage (16) is adapted to control the input current (I1) according to predefined conditions if the input voltage deviation is lower than a threshold level (63) and to allow a deviation of the input current (I1) from the predefined conditions if the input voltage deviation exceeds the threshold level (63).
Abstract:
A driving circuit includes a rectifying and smoothing circuit that rectifies an AC dimming signal, and a voltage conversion circuit including: a switching element having a source connected to a low-potential output terminal of the rectifying and smoothing circuit; a diode having an anode connected to a high-potential output terminal of the rectifying and smoothing circuit; an inductor disposed between the diode and a drain of the switching element; an oscillation controller; a capacitor that is charged by receiving magnetic energy from the inductor when the switching element is OFF, and discharges to a load when the switching element is ON; and a power control circuit that applies a voltage corresponding to a voltage at a high-potential terminal of the capacitor to the oscillation controller as a supply voltage for driving the oscillation controller.
Abstract:
In a single lighting device including a large number of light-emitting elements (LEEs), the LEEs are divided into separately powered groups, and different combinations of the groups are fully energized to achieve the desired overall brightness. In some embodiments, the number of LEEs in each group has a binary relationship to the other groups. The resolution of the dimming is the brightness of the smallest group. In one example of five binary weighted groups of LEEs, 32 brightness levels can be achieved while the LEEs in the energized groups are fully ON. Thus, since there is no high frequency switching, there is substantially no power dissipation by the dimming control system, and there is limited noise or EMI created. The dimming control can be easily implemented with a logic circuit controlling a transistor switch for each group.
Abstract:
A system and method of thermal management for an LED are provided. A method provided by the system includes (a) providing a forward drive current to power the LED, the forward drive current having a first LED operating current component; (b) detecting the first LED operating current component; (c) sensing a first thermal operating point of the LED; and (d) generating a temperature signal indicative of the first thermal operating point. The method also includes (e) determining a thermal operating range of the LED; (f) determining that the first thermal operating point of the LED is outside the thermal operating range of the LED; and (g) generating a first control setting configured to cause the LED to be driven at a second operating point, the second thermal operating point within the thermal operating range.