Abstract:
The present invention relates to an electrically conductive film characterized by being able to undergo elastic deformation, having little residual strain rate and exhibiting stress relaxation properties. More specifically, the present invention relates to an electrically conductive film wherein the stress relaxation rate (R) and the residual strain rate α, as measured in a prescribed extension-restoration test, are as follows: 20%≦R≦95% and 0%≦α≦3%.
Abstract:
An article comprises an electronic component, such as an integrated circuit or packaged integrated circuit, and a circuit sheet arrangement. The circuit sheet arrangement may comprise a flexible planar substrate and conductive tracks formed on a face of the substrate. The substrate is configured to have an aperture enclosed by surrounding portion of the substrate and to have at least two arms supporting respective conductive tracks which extend into the aperture from the surrounding portions. The electronic component is disposed over the aperture and is attached to conductive tracks on the arms, for example, using conductive glue or ink.
Abstract:
The present invention relates to a kit devise, and method for absorbing leakage current in an electronic circuit including at least one switch and at least one load by using an absorbing device, an absorbing material or an absorbent marking device, wherein the absorbent marking device is configured to mark or attach an absorbing material on the circuit or on the load.
Abstract:
A linear conductor connection terminal that is fixed to a substrate and that comes in contact in a conductive manner with a linear conductor that is inserted in a hole portion provided in the substrate. The linear conductor connection terminal includes a contact portion that is positioned inside the hole portion and that comes in contact in the hole portion with the linear conductor in a conductive manner; an elastic piece that elastically supports the contact portion; a top surface portion provided so as to be spaced apart from the contact portion in an insertion direction of the linear conductor, the top surface portion including an insertion hole to introduce the linear conductor to the contact portion; and a first leg portion and a second leg portion that support the top surface portion that is spaced apart from the contact portion.
Abstract:
A device with low dielectric absorption includes a printed circuit board (PCB), a component connection area including a first conductor layered on a top surface of the component connection area and a second conductor layered on a bottom surface of the component connection area, an aperture surrounding the component connection area, a low-leakage component connecting the component connection area to the PCB across the aperture, and a guard composed of a third conductor at least substantially surrounding the aperture on a top surface of the PCB and a fourth conductor at least substantially surrounding the aperture on a bottom surface of the PCB.
Abstract:
A method for manufacturing an array substrate includes a step of forming a first metal layer on a glass substrate such that the first metal layer includes multiple first metal lines distributed as a fan shape, each of the first metal lines including a predetermined number of first metal strip portions that are spaced from each other and have an equal length; forming an insulation layer on the multiple first metal lines in such a way that portions of the insulation layer respectively covering the first metal strip portions are each provided with a first through hole and a second through hole formed therein; and forming a second metal layer on the insulation layer such that the second metal layer includes multiple second metal strip portions respectively in contact with the first metal strip portions of the first metal lines via the first through holes and the second through holes.
Abstract:
A package substrate includes a core substrate, a first buildup layer and a second buildup layer. The first buildup layer includes an uppermost interlayer, an upper inner interlayer, an uppermost conductive layer including first pads and second pads, an upper first conductive layer, an upper second conductive layer, vias formed through the uppermost interlayer and connecting the upper first conductive layer and the second pads, and skip vias formed through the uppermost and upper inner interlayers and connecting the uppermost and upper second conductive layers. The second buildup layer includes a lowermost interlayer, a lower inner interlayer, a lowermost conductive layer including third pads, a lower first conductive layer, a lower second conductive layer, vias formed through the lowermost interlayer and connecting the lower first conductive layer and third pads, and skip vias formed through the lowermost and lower inner interlayers and connecting the lowermost and lower second conductive layers.
Abstract:
[Object] There is suggested a printed circuit board capable of realizing impedance matching by securing joint reliability between signal pins of a surface mount connector and signal pin pads and preventing the reduction of impedance of signal pin pads while minimizing the reduction of a wirable area.[Solution] A printed circuit board equipped with a signal pin pad, which is soldered to a signal pin from a surface mount connector, and a ground layer located as a lower layer below the signal pin pad; wherein a fillet is formed around a joint area between the signal pin and the signal pin pad after soldering; wherein a cut-out portion is provided in the signal pin pad within a joint area with the signal pin; and wherein the size of the cut-out portion is set within the range of being completely covered within the joint area with the signal pin based on size tolerance of the signal pin, fabrication tolerance of the printed circuit board, and mount position tolerance of the surface mount connector.
Abstract:
A wiring board includes a first substrate including a first surface and a second substrate including a first surface. A solder hole is arranged at least in the first surface of the first substrate. A solder hole is arranged at least in the first surface of the second substrate. The second substrate is coupled to the first substrate. The first substrate and the second substrate are electrically connected with each other. The first surface of the first substrate and the first surface of the second substrate are flush with each other and configured such that a part of one surface of a mask is placed on the first surface of the first substrate and another part of the surface of the mask is placed on the first surface of the second substrate.
Abstract:
A method for high rate assembly of nanoelements into two-dimensional void patterns on a non-conductive substrate surface utilizes an applied electric field to stabilize against forces resulting from pulling the substrate through the surface of a nanoelement suspension. The electric field contours emanating from a conductive layer in the substrate, covered by an insulating layer, are modified by a patterned photoresist layer, resulting in an increased driving force for nanoelements to migrate from a liquid suspension to voids on a patterned substrate having a non-conductive surface. The method can be used for the production of microscale and nanoscale circuits, sensors, and other electronic devices.