Abstract:
Some embodiments provide a method for initiating a video conference using a first mobile device. The method presents, during an audio call through a wireless communication network with a second device, a selectable user-interface (UI) item on the first mobile device for switching from the audio call to the video conference. The method receives a selection of the selectable UI item. The method initiates the video conference without terminating the audio call. The method terminates the audio call before allowing the first and second devices to present audio and video data exchanged through the video conference.
Abstract:
A service for providing messaging extension apps can be an online store that can be browsed and searched for the apps. The store uses extension app identifiers which are related to app identifiers that are sent between devices in a conversation of messages so that a receiving device can, when it does not have the extension app installed to interact with received content, use the extension app identifier to download and install the required extension app. In one embodiment, the download and install can occur while the messaging app remains the foreground app, and the messaging app adds an icon of the newly installed extension app into a browsable tray in the UI of the messaging app.
Abstract:
A distribution system for distributing stickers that are available in a set of different resolutions for different target devices is described. The distribution system (e.g. a messaging sticker store) can create a bundle of stickers for each screen resolution in the set of target devices.
Abstract:
A method for adaptive audio codec selection during a communication session is disclosed. The method can include negotiating a set of audio codecs for use during the communication session. The method can further include defining multiple audio tiers. Each audio tier can be associated with a network condition and can define an audio codec from the set of audio codecs for use in the associated network condition. The method can also include using a first audio codec during the wireless communication session. The method can additionally include determining a changed network condition selecting a second audio codec by determining the audio tier corresponding to the changed network condition. The method can further include, in response to the changed network condition, switching from the first audio codec to a second audio codec that is defined by an audio tier having an associated network condition corresponding to the changed network condition.
Abstract:
A system and method are described for establishing two-way communication between devices that have a certain set of hardware and/or capabilities allowing the devices to send and receive SMS/MMS messages using cellular networks on behalf of devices that lack the hardware and/or capabilities. A user's device lacking SMS/MMS capabilities queries an identity management service for device capabilities of other devices associated with the same user. The user's device lacking SMS/MMS capabilities can receive from the identity management service a device profile of each device associated with the user. The device profile can include one or more fields, flags, or indicators that specify or are otherwise indicative of hardware and/or software capabilities of a device. The user's device lacking SMS/MMS capabilities can select a device having SMS/MMS capabilities to act as a proxy based on a device's corresponding device profile that indicates that the device has SMS/MMS capabilities.
Abstract:
Techniques for live location sharing are described. A first mobile device and a second mobile device can communicate with one another using an IM program. The first mobile device can receive a user input to share a location of the first mobile device in the IM program. Sharing the location can include causing the second mobile device to display a location of the first mobile device in an IM program user interface on the second mobile device. Duration of sharing the location can be user-configurable. The second mobile device may or may not share a location of the second device for display in the IM program executing on the first mobile device.
Abstract:
A wireless device described herein can use information on data flow, in addition to indications from the physical network, to decide on suitable bandwidth usage for audio and video information. This data flow information is further used to determine an efficient network route to use for high-quality reception and transmission of audio and video data, as well as the appropriate time to switch between available network routes to improve bandwidth performance.
Abstract:
A method for adaptive audio codec selection during a communication session is disclosed. The method can include negotiating a set of audio codecs for use during the communication session. The method can further include defining multiple audio tiers. Each audio tier can be associated with a network condition and can define an audio codec from the set of audio codecs for use in the associated network condition. The method can also include using a first audio codec during the wireless communication session. The method can additionally include determining a changed network condition selecting a second audio codec by determining the audio tier corresponding to the changed network condition. The method can further include, in response to the changed network condition, switching from the first audio codec to a second audio codec that is defined by an audio tier having an associated network condition corresponding to the changed network condition.
Abstract:
A wireless device described herein can use information on data flow, in addition to indications from the physical network, to decide on suitable bandwidth usage for audio and video information. This data flow information is further used to determine an efficient network route to use for high-quality reception and transmission of audio and video data, as well as the appropriate time to switch between available network routes to improve bandwidth performance.
Abstract:
Techniques for live location sharing are described. A first mobile device and a second mobile device can communicate with one another using an IM program. The first mobile device can receive a user input to share a location of the first mobile device in the IM program. Sharing the location can include causing the second mobile device to display a location of the first mobile device in an IM program user interface on the second mobile device. Duration of sharing the location can be user-configurable. The second mobile device may or may not share a location of the second device for display in the IM program executing on the first mobile device.