Abstract:
A butting step S1 of butting end surfaces of multi-core fibers against each other by aligning central axes CA of clads 20 of the multi-core fibers to cause each core 11 of one multi-core fiber 1a and each core 11 of the other multi-core fiber 1b to face each other, and a fusing step S2 of fusing the multi-core fibers to each other by carrying out discharge by a pair of discharge electrodes 50a and 50b that sandwich a butted position of the multi-core fibers and face each other are provided. The fusing step S2 causes tips 51a and 51b of the discharge electrodes to perform reciprocating motion such that a straight line SL that connects the tips 51a and 51b of the discharge electrodes moves while describing a surface perpendicular to the central axes CA.
Abstract:
A multi-core fiber includes a plurality of cores, a marker which is disposed to be parallel to the cores, and a clad which surrounds outer peripheral surfaces of the cores and the marker. The marker may propagate light having a wavelength which is the same as a wavelength of light which propagates in the core as single mode light.
Abstract:
A multicore fiber includes a cladding and a plurality of core elements which is provided in the cladding and includes a core, an inner cladding layer that surrounds the core, and a low-refractive index layer that surrounds the inner cladding layer and has a lower average refractive index than the cladding and the inner cladding layer. The plurality of core elements is arranged such that a specific core element is surrounded by three or more core elements, and a low-refractive index layer of a partial core element of the plurality of core elements is configured to have larger light confinement loss in the core than low-refractive index layers of the other partial core elements.
Abstract:
A radius of a first core 21 in a large-diameter end surface EF1 of a tapered portion 31 is denoted by r1S, a radius of a second core 22 is denoted by r2S, a relative refractive index difference of the first core 21 with respect to a clad 23 is denoted by Δ1, a relative refractive index difference of the second core 22 with respect to the clad 23 is denoted by Δ2, a refractive index volume of the first core 21 is denoted by V1S, and a refractive index volume of the second core 22 is denoted by V2S, r2S/r1S is set to be 3 or more and 5 or less, V2S/V1S is set to be 1.07r22−13.5 or more and 1.07r22−11.5 or less, and r2S/r1S is set to be −3×Δ1/Δ2+10 or more.
Abstract:
A multicore fiber includes a cladding and a plurality of core elements which is provided in the cladding and includes a core, an inner cladding layer that surrounds the core, and a low-refractive index layer that surrounds the inner cladding layer and has a lower average refractive index than the cladding and the inner cladding layer. The plurality of core elements is arranged such that a specific core element is surrounded by three or more core elements, and a low-refractive index layer of a partial core element of the plurality of core elements is configured to have larger light confinement loss in the core than low-refractive index layers of the other partial core elements.
Abstract:
A multicore fiber includes a plurality of core elements; and a clad surrounding an outer periphery surface of each of the core elements, and each of the core elements includes a core, a first clad surrounding the outer periphery surface of the core and a second clad surrounding an outer periphery surface of the first clad, and when a refractive index of the core is n1, a refractive index of the first clad is n2, a refractive index of the second clad is n3 and a refractive index of the clad is n4, all of n1>n2>n3, n1>n4 and n3
Abstract:
An optical fiber preform production method includes: inserting at least one glass rod into at least one through-hole that penetrates a cladding glass body that is a cladding of an optical fiber; integrating a dummy rod by either integrating a solid dummy silica rod with a first end of the cladding glass body by heating the first end to close a first opening of the through-hole that opens in the first end, or forming a base end seal that closes the first opening in the first end and integrating the solid dummy silica rod with the base end; and closing a second opening of the through-hole that opens in a second end of the cladding glass body by heating and deforming the second end.
Abstract:
An optical fiber drawing furnace heating element includes a heat generator including: a tubular resistance heating element in which at least a part of an optical fiber preform is disposed in a through-hole; a first portion extending, from a first end portion, over a predetermined section along a longitudinal direction; and a second portion disposed closer to a second end portion than the first portion. The second portion has a wall thickness on a side of the first end portion being equal to or larger than a wall thickness of the first portion. The wall thickness of the second portion increases toward a side of the second end portion from the side of the first end portion.
Abstract:
A multicore fiber includes: a first core having a first propagation loss of a first light beam in a mode one order higher than a mode of a second light beam that transmits information. The first propagation loss is 0.02 dB/m or more and 1 dB/m or less, in a wavelength band of light beams including the second light beam that transmit the information when a bend having a diameter of 280 mm is applied to the multicore fiber.
Abstract:
An optical transmission device includes a plurality of transmitting/receiving units provided on a substrate, each transmitting/receiving unit includes: an optical transmitter; an optical receiver; a polarization combiner/splitter; and a connection portion. In the connection portions which are arranged at the positions symmetrical to each other, a direction opposite, with respect to a virtual symmetry axis, to a direction of a main electric field on a plane perpendicular to an emission direction of an optical wave of the connection portion which is emitted from one of the connection portions to an outside is substantially orthogonal to a direction of a main electric field on a plane perpendicular to an emission direction of an optical wave of the connection portion which is emitted from the other of the connection portions to an outside.