-
公开(公告)号:US11741366B2
公开(公告)日:2023-08-29
申请号:US16726119
申请日:2019-12-23
Applicant: Google LLC
Inventor: Tara N. Sainath , Vikas Sindhwani
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing long-short term memory layers with compressed gating functions. One of the systems includes a first long short-term memory (LSTM) layer, wherein the first LSTM layer is configured to, for each of the plurality of time steps, generate a new layer state and a new layer output by applying a plurality of gates to a current layer input, a current layer state, and a current layer output, each of the plurality of gates being configured to, for each of the plurality of time steps, generate a respective intermediate gate output vector by multiplying a gate input vector and a gate parameter matrix. The gate parameter matrix for at least one of the plurality of gates is a structured matrix or is defined by a compressed parameter matrix and a projection matrix.
-
公开(公告)号:US11646019B2
公开(公告)日:2023-05-09
申请号:US17443557
申请日:2021-07-27
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Tara N. Sainath , Yonghui Wu , Patrick An Phu Nguyen , Zhifeng Chen , Chung-Cheng Chiu , Anjuli Patricia Kannan
IPC: G10L15/197 , G10L15/16 , G10L15/06 , G10L15/02 , G10L15/22
CPC classification number: G10L15/197 , G10L15/02 , G10L15/063 , G10L15/16 , G10L15/22 , G10L2015/025
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for speech recognition using attention-based sequence-to-sequence models. In some implementations, audio data indicating acoustic characteristics of an utterance is received. A sequence of feature vectors indicative of the acoustic characteristics of the utterance is generated. The sequence of feature vectors is processed using a speech recognition model that has been trained using a loss function that uses N-best lists of decoded hypotheses, the speech recognition model including an encoder, an attention module, and a decoder. The encoder and decoder each include one or more recurrent neural network layers. A sequence of output vectors representing distributions over a predetermined set of linguistic units is obtained. A transcription for the utterance is obtained based on the sequence of output vectors. Data indicating the transcription of the utterance is provided.
-
公开(公告)号:US20220310072A1
公开(公告)日:2022-09-29
申请号:US17616129
申请日:2020-06-03
Applicant: GOOGLE LLC
Inventor: Tara N. Sainath , Ruoming Pang , David Rybach , Yanzhang He , Rohit Prabhavalkar , Wei Li , Mirkó Visontai , Qiao Liang , Trevor Strohman , Yonghui Wu , Ian C. McGraw , Chung-Cheng Chiu
Abstract: Two-pass automatic speech recognition (ASR) models can be used to perform streaming on-device ASR to generate a text representation of an utterance captured in audio data. Various implementations include a first-pass portion of the ASR model used to generate streaming candidate recognition(s) of an utterance captured in audio data. For example, the first-pass portion can include a recurrent neural network transformer (RNN-T) decoder. Various implementations include a second-pass portion of the ASR model used to revise the streaming candidate recognition(s) of the utterance and generate a text representation of the utterance. For example, the second-pass portion can include a listen attend spell (LAS) decoder. Various implementations include a shared encoder shared between the RNN-T decoder and the LAS decoder.
-
公开(公告)号:US20220101836A1
公开(公告)日:2022-03-31
申请号:US17643423
申请日:2021-12-09
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Golan Pundak , Tara N. Sainath , Antoine Jean Bruguier
IPC: G10L15/187 , G06N20/10 , G10L19/04
Abstract: A method of biasing speech recognition includes receiving audio data encoding an utterance and obtaining a set of one or more biasing phrases corresponding to a context of the utterance. Each biasing phrase in the set of one or more biasing phrases includes one or more words. The method also includes processing, using a speech recognition model, acoustic features derived from the audio data and grapheme and phoneme data derived from the set of one or more biasing phrases to generate an output of the speech recognition model. The method also includes determining a transcription for the utterance based on the output of the speech recognition model.
-
公开(公告)号:US20210233512A1
公开(公告)日:2021-07-29
申请号:US17150491
申请日:2021-01-15
Applicant: Google LLC
Inventor: Charles Caleb Peyser , Tara N. Sainath , Golan Pundak
IPC: G10L15/06 , G06N3/04 , G10L15/16 , G10L15/18 , G10L15/187
Abstract: A method for training a speech recognition model with a minimum word error rate loss function includes receiving a training example comprising a proper noun and generating a plurality of hypotheses corresponding to the training example. Each hypothesis of the plurality of hypotheses represents the proper noun and includes a corresponding probability that indicates a likelihood that the hypothesis represents the proper noun. The method also includes determining that the corresponding probability associated with one of the plurality of hypotheses satisfies a penalty criteria. The penalty criteria indicating that the corresponding probability satisfies a probability threshold, and the associated hypothesis incorrectly represents the proper noun. The method also includes applying a penalty to the minimum word error rate loss function.
-
公开(公告)号:US10930270B2
公开(公告)日:2021-02-23
申请号:US16541982
申请日:2019-08-15
Applicant: Google LLC
Inventor: Tara N. Sainath , Ron J. Weiss , Andrew W. Senior , Kevin William Wilson
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing audio waveforms. In some implementations, a time-frequency feature representation is generated based on audio data. The time-frequency feature representation is input to an acoustic model comprising a trained artificial neural network. The trained artificial neural network comprising a frequency convolution layer, a memory layer, and one or more hidden layers. An output that is based on output of the trained artificial neural network is received. A transcription is provided, where the transcription is determined based on the output of the acoustic model.
-
57.
公开(公告)号:US20200349923A1
公开(公告)日:2020-11-05
申请号:US16861190
申请日:2020-04-28
Applicant: Google LLC
Inventor: Ke Hu , Antoine Jean Bruguier , Tara N. Sainath , Rohit Prakash Prabhavalkar , Golan Pundak
IPC: G10L15/06 , G10L15/187 , G10L15/193 , G10L15/32 , G10L15/28 , G10L25/30 , G10L15/02
Abstract: A method includes receiving audio data encoding an utterance spoken by a native speaker of a first language, and receiving a biasing term list including one or more terms in a second language different than the first language. The method also includes processing, using a speech recognition model, acoustic features derived from the audio data to generate speech recognition scores for both wordpieces and corresponding phoneme sequences in the first language. The method also includes rescoring the speech recognition scores for the phoneme sequences based on the one or more terms in the biasing term list, and executing, using the speech recognition scores for the wordpieces and the rescored speech recognition scores for the phoneme sequences, a decoding graph to generate a transcription for the utterance.
-
公开(公告)号:US20200335091A1
公开(公告)日:2020-10-22
申请号:US16809403
申请日:2020-03-04
Applicant: Google LLC
Inventor: Shuo-yiin Chang , Rohit Prakash Prabhavalkar , Gabor Simko , Tara N. Sainath , Bo Li , Yangzhang He
Abstract: A method includes receiving audio data of an utterance and processing the audio data to obtain, as output from a speech recognition model configured to jointly perform speech decoding and endpointing of utterances: partial speech recognition results for the utterance; and an endpoint indication indicating when the utterance has ended. While processing the audio data, the method also includes detecting, based on the endpoint indication, the end of the utterance. In response to detecting the end of the utterance, the method also includes terminating the processing of any subsequent audio data received after the end of the utterance was detected.
-
公开(公告)号:US10783900B2
公开(公告)日:2020-09-22
申请号:US14847133
申请日:2015-09-08
Applicant: Google LLC
Inventor: Tara N. Sainath , Andrew W. Senior , Oriol Vinyals , Hasim Sak
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying the language of a spoken utterance. One of the methods includes receiving input features of an utterance; and processing the input features using an acoustic model that comprises one or more convolutional neural network (CNN) layers, one or more long short-term memory network (LSTM) layers, and one or more fully connected neural network layers to generate a transcription for the utterance.
-
公开(公告)号:US20200043483A1
公开(公告)日:2020-02-06
申请号:US16529252
申请日:2019-08-01
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Tara N. Sainath , Yonghui Wu , Patrick An Phu Nguyen , Zhifeng Chen , Chung-Cheng Chiu , Anjuli Patricia Kannan
IPC: G10L15/197 , G10L15/16 , G10L15/22 , G10L15/06 , G10L15/02
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for speech recognition using attention-based sequence-to-sequence models. In some implementations, audio data indicating acoustic characteristics of an utterance is received. A sequence of feature vectors indicative of the acoustic characteristics of the utterance is generated. The sequence of feature vectors is processed using a speech recognition model that has been trained using a loss function that uses N-best lists of decoded hypotheses, the speech recognition model including an encoder, an attention module, and a decoder. The encoder and decoder each include one or more recurrent neural network layers. A sequence of output vectors representing distributions over a predetermined set of linguistic units is obtained. A transcription for the utterance is obtained based on the sequence of output vectors. Data indicating the transcription of the utterance is provided.
-
-
-
-
-
-
-
-
-