Parallel Tacotron Non-Autoregressive and Controllable TTS

    公开(公告)号:US20220122582A1

    公开(公告)日:2022-04-21

    申请号:US17327076

    申请日:2021-05-21

    Applicant: Google LLC

    Abstract: A method for training a non-autoregressive TTS model includes receiving training data that includes a reference audio signal and a corresponding input text sequence. The method also includes encoding the reference audio signal into a variational embedding that disentangles the style/prosody information from the reference audio signal and encoding the input text sequence into an encoded text sequence. The method also includes predicting a phoneme duration for each phoneme in the input text sequence and determining a phoneme duration loss based on the predicted phoneme durations and a reference phoneme duration. The method also includes generating one or more predicted mel-frequency spectrogram sequences for the input text sequence and determining a final spectrogram loss based on the predicted mel-frequency spectrogram sequences and a reference mel-frequency spectrogram sequence. The method also includes training the TTS model based on the final spectrogram loss and the corresponding phoneme duration loss.

    Multi-dialect and multilingual speech recognition

    公开(公告)号:US11238845B2

    公开(公告)日:2022-02-01

    申请号:US16684483

    申请日:2019-11-14

    Applicant: GOOGLE LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer-readable media, for speech recognition using multi-dialect and multilingual models. In some implementations, audio data indicating audio characteristics of an utterance is received. Input features determined based on the audio data are provided to a speech recognition model that has been trained to output score indicating the likelihood of linguistic units for each of multiple different language or dialects. The speech recognition model can be one that has been trained using cluster adaptive training. Output that the speech recognition model generated in response to receiving the input features determined based on the audio data is received. A transcription of the utterance generated based on the output of the speech recognition model is provided.

    MINIMUM WORD ERROR RATE TRAINING FOR ATTENTION-BASED SEQUENCE-TO-SEQUENCE MODELS

    公开(公告)号:US20210358491A1

    公开(公告)日:2021-11-18

    申请号:US17443557

    申请日:2021-07-27

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for speech recognition using attention-based sequence-to-sequence models. In some implementations, audio data indicating acoustic characteristics of an utterance is received. A sequence of feature vectors indicative of the acoustic characteristics of the utterance is generated. The sequence of feature vectors is processed using a speech recognition model that has been trained using a loss function that uses N-best lists of decoded hypotheses, the speech recognition model including an encoder, an attention module, and a decoder. The encoder and decoder each include one or more recurrent neural network layers. A sequence of output vectors representing distributions over a predetermined set of linguistic units is obtained. A transcription for the utterance is obtained based on the sequence of output vectors. Data indicating the transcription of the utterance is provided.

    Minimum word error rate training for attention-based sequence-to-sequence models

    公开(公告)号:US11107463B2

    公开(公告)日:2021-08-31

    申请号:US16529252

    申请日:2019-08-01

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for speech recognition using attention-based sequence-to-sequence models. In some implementations, audio data indicating acoustic characteristics of an utterance is received. A sequence of feature vectors indicative of the acoustic characteristics of the utterance is generated. The sequence of feature vectors is processed using a speech recognition model that has been trained using a loss function that uses N-best lists of decoded hypotheses, the speech recognition model including an encoder, an attention module, and a decoder. The encoder and decoder each include one or more recurrent neural network layers. A sequence of output vectors representing distributions over a predetermined set of linguistic units is obtained. A transcription for the utterance is obtained based on the sequence of output vectors. Data indicating the transcription of the utterance is provided.

    Implicit bridging of machine learning tasks

    公开(公告)号:US10713593B2

    公开(公告)日:2020-07-14

    申请号:US15394708

    申请日:2016-12-29

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for performing machine learning tasks. One method includes receiving (i) a model input, and (ii) data identifying a first machine learning task to be performed on the model input to generate a first type of model output for the model input; augmenting the model input with an identifier for the first machine learning task to generate an augmented model input; and processing the augmented model input using a machine learning model, wherein the machine learning model has been trained on training data to perform a plurality of machine learning tasks including the first machine learning task, and wherein the machine learning model has been configured through training to process the augmented model input to generate a machine learning model output of the first type for the model input.

    Implicit bridging of machine learning tasks

    公开(公告)号:US10679148B2

    公开(公告)日:2020-06-09

    申请号:US16402787

    申请日:2019-05-03

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for performing machine learning tasks. One method includes receiving (i) a model input, and (ii) data identifying a first machine learning task to be performed on the model input to generate a first type of model output for the model input; augmenting the model input with an identifier for the first machine learning task to generate an augmented model input; and processing the augmented model input using a machine learning model. An exemplary system applying implicit bridging for machine learning tasks, as described in this specification, trains a machine learning model to perform certain types of machine learning tasks without requiring explicit training data for the certain types of machine learning tasks to be used during training.

    MULTI-DIALECT AND MULTILINGUAL SPEECH RECOGNITION

    公开(公告)号:US20200160836A1

    公开(公告)日:2020-05-21

    申请号:US16684483

    申请日:2019-11-14

    Applicant: GOOGLE LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer-readable media, for speech recognition using multi-dialect and multilingual models. In some implementations, audio data indicating audio characteristics of an utterance is received. Input features determined based on the audio data are provided to a speech recognition model that has been trained to output score indicating the likelihood of linguistic units for each of multiple different language or dialects. The speech recognition model can be one that has been trained using cluster adaptive training. Output that the speech recognition model generated in response to receiving the input features determined based on the audio data is received. A transcription of the utterance generated based on the output of the speech recognition model is provided.

    SYNTHESIZING SPEECH FROM TEXT USING NEURAL NETWORKS

    公开(公告)号:US20200051583A1

    公开(公告)日:2020-02-13

    申请号:US16058640

    申请日:2018-08-08

    Applicant: Google LLC

    Abstract: Methods, systems, and computer program products for generating, from an input character sequence, an output sequence of audio data representing the input character sequence. The output sequence of audio data includes a respective audio output sample for each of a number of time steps. One example method includes, for each of the time steps: generating a mel-frequency spectrogram for the time step by processing a representation of a respective portion of the input character sequence using a decoder neural network; generating a probability distribution over a plurality of possible audio output samples for the time step by processing the mel-frequency spectrogram for the time step using a vocoder neural network; and selecting the audio output sample for the time step from the possible audio output samples in accordance with the probability distribution.

Patent Agency Ranking