-
公开(公告)号:US11461388B2
公开(公告)日:2022-10-04
申请号:US16105717
申请日:2018-08-20
Applicant: Google LLC
Inventor: Geremy A. Heitz, III , Adam Berenzweig , Jason E. Weston , Ron J. Weiss , Sally A. Goldman , Thomas Walters , Samy Bengio , Douglas Eck , Jay M. Ponte , Ryan M. Rifkin
IPC: G06F16/00 , G06F16/638 , G06F16/683
Abstract: Generating a playlist may include designating a seed track in an audio library; identifying audio tracks in the audio library having constructs that are within a range of a corresponding construct of the seed track, where the constructs for the audio tracks are derived from frequency representations of the audio tracks, and the corresponding construct for the seed track is derived from a frequency representation of the seed track; and generating the playlist using at least some of the audio tracks that were identified.
-
公开(公告)号:US20210295858A1
公开(公告)日:2021-09-23
申请号:US17222736
申请日:2021-04-05
Applicant: Google LLC
Inventor: Yonghui Wu , Jonathan Shen , Ruoming Pang , Ron J. Weiss , Michael Schuster , Navdeep Jaitly , Zongheng Yang , Zhifeng Chen , Yu Zhang , Yuxuan Wang , Russell John Wyatt Skerry-Ryan , Ryan M. Rifkin , Ioannis Agiomyrgiannakis
Abstract: Methods, systems, and computer program products for generating, from an input character sequence, an output sequence of audio data representing the input character sequence. The output sequence of audio data includes a respective audio output sample for each of a number of time steps. One example method includes, for each of the time steps: generating a mel-frequency spectrogram for the time step by processing a representation of a respective portion of the input character sequence using a decoder neural network; generating a probability distribution over a plurality of possible audio output samples for the time step by processing the mel-frequency spectrogram for the time step using a vocoder neural network; and selecting the audio output sample for the time step from the possible audio output samples in accordance with the probability distribution.
-
公开(公告)号:US11107457B2
公开(公告)日:2021-08-31
申请号:US16696101
申请日:2019-11-26
Applicant: Google LLC
Inventor: Samuel Bengio , Yuxuan Wang , Zongheng Yang , Zhifeng Chen , Yonghui Wu , Ioannis Agiomyrgiannakis , Ron J. Weiss , Navdeep Jaitly , Ryan M. Rifkin , Robert Andrew James Clark , Quoc V. Le , Russell J. Ryan , Ying Xiao
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
-
公开(公告)号:US11062725B2
公开(公告)日:2021-07-13
申请号:US16278830
申请日:2019-02-19
Applicant: Google LLC
Inventor: Ehsan Variani , Kevin William Wilson , Ron J. Weiss , Tara N. Sainath , Arun Narayanan
IPC: G10L15/16 , G10L25/30 , G10L21/028 , G10L21/0388 , G10L19/008 , G10L15/20 , G10L21/0208 , G10L21/0216
Abstract: This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.
-
公开(公告)号:US20200380952A1
公开(公告)日:2020-12-03
申请号:US16855042
申请日:2020-04-22
Applicant: Google LLC
Inventor: Yu Zhang , Ron J. Weiss , Byungha Chun , Yonghui Wu , Zhifeng Chen , Russell John Wyatt Skerry-Ryan , Ye Jia , Andrew M. Rosenberg , Bhuvana Ramabhadran
IPC: G10L13/047
Abstract: A method includes receiving an input text sequence to be synthesized into speech in a first language and obtaining a speaker embedding, the speaker embedding specifying specific voice characteristics of a target speaker for synthesizing the input text sequence into speech that clones a voice of the target speaker. The target speaker includes a native speaker of a second language different than the first language. The method also includes generating, using a text-to-speech (TTS) model, an output audio feature representation of the input text by processing the input text sequence and the speaker embedding. The output audio feature representation includes the voice characteristics of the target speaker specified by the speaker embedding.
-
公开(公告)号:US10573293B2
公开(公告)日:2020-02-25
申请号:US16447862
申请日:2019-06-20
Applicant: Google LLC
Inventor: Samuel Bengio , Yuxuan Wang , Zongheng Yang , Zhifeng Chen , Yonghui Wu , Ioannis Agiomyrgiannakis , Ron J. Weiss , Navdeep Jaitly , Ryan M. Rifkin , Robert Andrew James Clark , Quoc V. Le , Russell J. Ryan , Ying Xiao
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
-
公开(公告)号:US10403269B2
公开(公告)日:2019-09-03
申请号:US15080927
申请日:2016-03-25
Applicant: Google LLC
Inventor: Tara N. Sainath , Ron J. Weiss , Andrew W. Senior , Kevin William Wilson
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing audio waveforms. In some implementations, a time-frequency feature representation is generated based on audio data. The time-frequency feature representation is input to an acoustic model comprising a trained artificial neural network. The trained artificial neural network comprising a frequency convolution layer, a memory layer, and one or more hidden layers. An output that is based on output of the trained artificial neural network is received. A transcription is provided, where the transcription is determined based on the output of the acoustic model.
-
公开(公告)号:US10224058B2
公开(公告)日:2019-03-05
申请号:US15350293
申请日:2016-11-14
Applicant: Google LLC
Inventor: Ehsan Variani , Kevin William Wilson , Ron J. Weiss , Tara N. Sainath , Arun Narayanan
IPC: G10L15/16 , G10L25/30 , G10L21/028 , G10L21/0388 , G10L19/008 , G10L15/20 , G10L21/0208 , G10L21/0216
Abstract: This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.
-
公开(公告)号:US20180357312A1
公开(公告)日:2018-12-13
申请号:US16105717
申请日:2018-08-20
Applicant: Google LLC
Inventor: Geremy A. Heitz, III , Adam Berenzweig , Jason E. Weston , Ron J. Weiss , Sally A. Goldman , Thomas Walters , Samy Bengio , Douglas Eck , Jay M. Ponte , Ryan M. Rifkin
IPC: G06F17/30
CPC classification number: G06F17/30772 , G06F17/30743
Abstract: Generating a playlist may include designating a seed track in an audio library; identifying audio tracks in the audio library having constructs that are within a range of a corresponding construct of the seed track, where the constructs for the audio tracks are derived from frequency representations of the audio tracks, and the corresponding construct for the seed track is derived from a frequency representation of the seed track; and generating the playlist using at least some of the audio tracks that were identified.
-
-
-
-
-
-
-
-