Abstract:
A method for predicting a bandwidth extension frequency band signal includes demultiplexing a received bitstream to obtain a frequency domain signal; determining whether a highest frequency bin, to which a bit is allocated, of the frequency domain signal is less than a preset start frequency bin of a bandwidth extension frequency band; predicting an excitation signal of the bandwidth extension frequency band according to the determination; and predicting the bandwidth extension frequency band signal according to the predicted excitation signal of the bandwidth extension frequency band and a frequency envelope of the bandwidth extension frequency band.
Abstract:
An audio signal decoding method includes: obtaining mode information of a high frequency band signal of an audio signal and indices of a low frequency band signal of the audio signal by parsing a received bitstream; obtaining the low frequency band signal based on the indices; predicting an excitation signal of a high frequency band signal based on the low frequency band signal; and reconstructing the high frequency band signal based on the frequency envelope and the excitation signal. A manner for obtaining the frequency envelope of the high frequency band signal when mode information indicates the high frequency band signal is a harmonic type signal is different from a manner for obtaining the frequency envelope of the high frequency band signal when the mode information indicates the high frequency band signal is not a harmonic type signal.
Abstract:
A vector joint encoding/decoding method and a vector joint encoder/decoder are provided, more than two vectors are jointly encoded, and an encoding index of at least one vector is split and then combined between different vectors, so that encoding idle spaces of different vectors can be recombined, thereby facilitating saving of encoding bits, and because an encoding index of a vector is split and then shorter split indexes are recombined, thereby facilitating reduction of requirements for the bit width of operating parts in encoding/decoding calculation.
Abstract:
A method includes obtaining a signal type of an audio signal and a low frequency band signal of the audio signal, where the audio signal includes the low frequency band signal and a high frequency band signal; obtaining a frequency envelope of the high frequency band signal according to the signal type; predicting an excitation signal of the high frequency band signal according to the low frequency band signal; and restoring the high frequency band signal according to the frequency envelope of the high frequency band signal and the excitation signal of the high frequency band signal. By using the technical solutions of the embodiments of the present invention, an error existing between a high frequency band signal obtained by prediction and an actual high frequency band signal can be effectively reduced, and an accuracy rate of the predicted high frequency band signal can be increased.
Abstract:
A method and an apparatus for allocating bits of an audio signal. The method includes dividing a frequency band of an audio signal into multiple sub-bands, and quantizing a sub-band normalization factor of each sub-band; classifying the multiple sub-bands into multiple groups, and acquiring a sum of intra-group sub-band normalization factors of each group; performing initial inter-group bit allocation to determine the initial number of bits of each group; performing secondary inter-group bit allocation to allocate coding bits of the audio signal to at least one group; and allocating the bits of the audio signal to sub-bands in the group. The present disclosure can, by means of grouping, ensure relatively stable allocation in a previous frame and a next frame and reduce an impact of global allocation on local discontinuity in a case of low and medium bit rates.
Abstract:
A method and an apparatus for allocating bits in an audio signal. The method includes dividing a frequency band of an audio signal into a plurality of subbands, quantizing a subband normalization factor of each subband; and an energy attribute of an audio signal of the corresponding group; allocating coding bits to at least one group, where a sum of coding bits allocated to the at least one group is the number of coding bits of the audio signal; and allocating the coding bits allocated to the at least one group to each subband in each group of the at least one group. In a case of a low or medium bit rate, the embodiments of the present invention can, by means of grouping, ensure relatively stable allocation of previous and subsequent frames and reduce impact of global allocation on partial discontinuity.
Abstract:
A method for predicting a bandwidth extension frequency band signal includes demultiplexing a received bitstream to obtain a frequency domain signal; determining whether a highest frequency bin, to which a bit is allocated, of the frequency domain signal is less than a preset start frequency bin of a bandwidth extension frequency band; predicting an excitation signal of the bandwidth extension frequency band according to the determination; and predicting the bandwidth extension frequency band signal according to the predicted excitation signal of the bandwidth extension frequency band and a frequency envelope of the bandwidth extension frequency band.
Abstract:
A vector joint encoding/decoding method and a vector joint encoder/decoder are provided, more than two vectors are jointly encoded, and an encoding index of at least one vector is split and then combined between different vectors, so that encoding idle spaces of different vectors can be recombined, thereby facilitating saving of encoding bits, and because an encoding index of a vector is split and then shorter split indexes are recombined, thereby facilitating reduction of requirements for the bit width of operating parts in encoding/decoding calculation.
Abstract:
A voice signal encoding and decoding method, device, and codec system are provided. The coding method includes: encoding an input voice signal to obtain a broadband code stream, where the broadband code stream includes a core layer bit stream and an extension enhancement layer bit stream (101); compressing the core layer bit stream to obtain a compressed code stream (102); and packing the compressed code stream and the extension enhancement layer bit stream to obtain a packed code stream (103). The core layer bit stream compressed, and the compressed code stream and the extension enhancement layer bit stream are packed, thereby reducing transmission bandwidth occupied by the input voice signal. Since the broadband voice encoding is performed on the input voice signal, a broadband voice code stream is transmitted by using narrowband transmission bandwidth, thereby improving the cost performance of voice signal transmission.
Abstract:
The present disclosure relates to a signal analyzer for processing an overlapped input signal frame comprising 2N subsequent input signal values. The signal analyzer comprises: a windower adapted to window the overlapped input signal frame to obtain a windowed signal, wherein the windower is adapted to zero M+N/2 subsequent input signal values of the overlapped input signal frame, wherein M is equal or greater than 1 and smaller than N/2; and a transformer adapted to transform the remaining 3N/2−M subsequent windowed signal values of the windowed signal using N−M sets of transform parameters to obtain a transformed-domain signal comprising N−M transformed-domain signal values.