摘要:
A system and method for providing a scalable spoken dialog system are disclosed. The method comprises receiving information which may be internal to the system or external to the system and dynamically modifying at least one module within a spoken dialog system according to the received information. The modules may be one or more of an automatic speech recognition, natural language understanding, dialog management and text-to-speech module or engine. Dynamically modifying the module may improve hardware performance or improve a specific caller's speech processing accuracy, for example. The modification of the modules or hardware may also be based on an application or a task, or based on a current portion of a dialog.
摘要:
A system and method are disclosed that improve automatic speech recognition in a spoken dialog system. The method comprises partitioning speech recognizer output into self-contained clauses, identifying a dialog act in each of the self-contained clauses, qualifying dialog acts by identifying a current domain object and/or a current domain action, and determining whether further qualification is possible for the current domain object and/or current domain action. If further qualification is possible, then the method comprises identifying another domain action and/or another domain object associated with the current domain object and/or current domain action, reassigning the another domain action and/or another domain object as the current domain action and/or current domain object and then recursively qualifying the new current domain action and/or current object. This process continues until nothing is left to qualify.
摘要:
Disclosed is a system and method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes converting data from a structured database associated with a website to a structured text data set and a structured task knowledge base, extracting linguistic items from the structured database, and training a spoken dialog service component using at least one of the structured text data, the structured task knowledge base, or the linguistic items. The system includes modules configured to implement the method.
摘要:
Disclosed is a system and method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes converting data from a structured database associated with a website to a structured text data set and a structured task knowledge base, extracting linguistic items from the structured database, and training a spoken dialog service component using at least one of the structured text data, the structured task knowledge base, or the linguistic items. The system includes modules configured to implement the method.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. After waiting for a predetermined time, speech vectors are generated and potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. After waiting for a predetermined time, speech vectors are generated and potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
Systems and methods for monitoring labelers of speech data. To test or train labelers, a labeler is presented with utterances that have already been identified as belonging to a particular class or call type. The labeler is asked to assign a call type to the utterances. The performance of the labeler is measured by comparing the call types assigned by the labeler with the existing call types of the utterances. The performance of a labeler can also be monitored as the labeler labels speech data by occasionally having the labeler label an utterance that is already labeled and by storing the results.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. Potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
Hierarchical signal bias removal (HSBR) signal conditioning uses a codebook constructed from the set of recognition models and is updated as the recognition models are modified during recognition model training. As a result, HSBR signal conditioning and recognition model training are based on the same set of recognition model parameters, which provides significant reduction in recognition error rate for the speech recognition system.
摘要:
A signal bias removal (SBR) method based on the maximum likelihood estimation of the bias for minimizing undesirable effects in speech recognition systems is described. The technique is readily applicable in various architectures including discrete (vector-quantization based), semicontinuous and continuous-density Hidden Markov Model (HMM) systems. For example, the SBR method can be integrated into a discrete density HMM and applied to telephone speech recognition where the contamination due to extraneous signal components is unknown. To enable real-time implementation, a sequential method for the estimation of the bias (SSBR) is disclosed.