Abstract:
The subject disclosure presents systems and methods for automatically selecting meaningful regions on a whole-slide image and performing quality control on the resulting collection of FOVs. Density maps may be generated quantifying the local density of detection results. The heat maps as well as combinations of maps (such as a local sum, ratio, etc.) may be provided as input into an automated FOV selection operation. The selection operation may select regions of each heat map that represent extreme and average representative regions, based on one or more rules. One or more rules may be defined in order to generate the list of candidate FOVs. The rules may generally be formulated such that FOVs chosen for quality control are the ones that require the most scrutiny and will benefit the most from an assessment by an expert observer.
Abstract:
Immune context scores are calculated for tumor tissue samples using continuous scoring functions. Feature metrics for at least one immune cell marker are calculated for a region or regions of interest, the feature metrics including at least a quantitative measure of human CD3 or total lymphocyte counts. A continuous scoring function is then applied to a feature vector including the feature metric and at least one additional metric related to an immunological biomarker, the output of which is an immune context score. The immune context score may then be plotted as a function of a diagnostic or treatment metric, such as a prognostic metric (e.g. overall survival, disease-specific survival, progression-free survival) or a predictive metric (e.g. likelihood of response to a particular treatment course). The immune context score may then be incorporated into diagnostic and/or treatment decisions.
Abstract:
Systems and methods disclosed herein describe a platform that automatically creates and executes a scoring guide for use in anatomical pathology. The platform can employ a fully-automated workflow for clustering the biological objects of interest and for providing cell-by-cell read-outs of heterogeneous tumor biomarkers based on their stain appearance. The platform can include a module for automatically creating and storing a scoring guide in a training database based on training digital images (240, 250), and an object classification module that executes the scoring guide when presented with new digital images to be scored pursuant to the scoring guide (299).
Abstract:
This disclosure describes methods, kits, and systems for scoring the immune response to cancer through examination of tissue infiltrating lymphocytes (TILs). Methods of scoring the immune response in cancer using tissue infiltrating lymphocytes include detecting CD3, CD8, CD20, and FoxP3 within the sample and scoring the detection manually or scoring the digital images of the staining with the aid of image analysis and algorithms.
Abstract:
The subject disclosure presents systems and methods for automatically selecting meaningful regions on a whole-slide image and performing quality control on the resulting collection of FOVs. Density maps may be generated quantifying the local density of detection results. The heat maps as well as combinations of maps (such as a local sum, ratio, etc.) may be provided as input into an automated FOV selection operation. The selection operation may select regions of each heat map that represent extreme and average representative regions, based on one or more rules. One or more rules may be defined in order to generate the list of candidate FOVs. The rules may generally be formulated such that FOVs chosen for quality control are the ones that require the most scrutiny and will benefit the most from an assessment by an expert observer.
Abstract:
Systems and methods disclosed herein describe a platform that automatically creates and executes a scoring guide for use in anatomical pathology. The platform can employ a fully-automated workflow for clustering the biological objects of interest and for providing cell-by-cell read-outs of heterogeneous tumor biomarkers based on their stain appearance. The platform can include a module for automatically creating and storing a scoring guide in a training database based on training digital images (240, 250), and an object classification module that executes the scoring guide when presented with new digital images to be scored pursuant to the scoring guide (299).
Abstract:
A method of segmenting images of biological specimens using adaptive classification to segment a biological specimen into different types of tissue regions. The segmentation is performed by, first, extracting features from the neighborhood of a grid of points (GPs) sampled on the whole-slide (WS) image and classifying them into different tissue types. Secondly, an adaptive classification procedure is performed where some or all of the GPs in a WS image are classified using a pre-built training database, and classification confidence scores for the GPs are generated. The classified GPs with high confidence scores are utilized to generate an adaptive training database, which is then used to re-classify the low confidence GPs. The motivation of the method is that the strong variation of tissue appearance makes the classification problem more challenging, while good classification results are obtained when the training and test data origin from the same slide.
Abstract:
Techniques for acquiring focused images of a microscope slide are disclosed. During a calibration phase, a “base” focal plane is determined using non-synthetic and/or synthetic auto-focus techniques. Furthermore, offset planes are determined for color channels (or filter bands) and used to generate an auto-focus model. During subsequent scans, the auto-focus model can be used to quickly estimate the focal plane of interest for each color channel (or filter band) rather than re-employing the non-synthetic and/or synthetic auto-focus techniques.
Abstract:
This disclosure describes methods, kits, and systems for scoring the immune response to cancer through examination of tissue infiltrating lymphocytes (TILs). Methods of scoring the immune response in cancer using tissue infiltrating lymphocytes include detecting CD3, CD8, CD20, and FoxP3 within the sample and scoring the detection manually or scoring the digital images of the staining with the aid of image analysis and algorithms.