Abstract:
The present invention describes both a stretch-blow-molded opaque polyester container and a method of making it. The container, typically a beverage bottle has less than 15% transmission of visible light (500 nm) through a 0.4 millimeter wall thickness. It contains from about 0.1 to about 5 wt. % of said opacifying material. The opacifying material may be any material compatible with polyester resin. The method of making the container includes introducing the opacifying material during polymerization, or prepared as a master batch for mixing with the polymer. Selection of certain opacifying materials can also result in favorable reheat properties, gas permeation-barrier improvements, and when the resin contains both opacifying material and oxygen scavenger there can be a synergistic effect with respect to CO2 permeation.
Abstract:
A system and method of mass-producing a bait station of wax matrix material for pesticide or insecticide delivery is disclosed. The apparatus and method includes a water-heated vat 110 which supplies liquid wax matrix material to molds which may be of various forms in accordance with the desired bait station to be manufactured. A fluid pump 120 pumps the wax matrix material from the vat through a tube 130 into molding tubes 140. At a molding tube station 140 the molds are filled and then carried by a conveyer belt 100 to a cooling tunnel 160. The wax-containing molds may be shaken by an in-line shaker in order to reduce air bubbles in the wax matrix. After the wax-containing molds are cooled by the cooling tunnel 160 the conveyer carries them to a labeling station 170, after which the finished bait stations are removed from their molds and packaged.
Abstract:
A system and method for vehicular mounted chemical and organic agent delivery. An apparatus and method are disclosed wherein an aluminum frame is utilized to mount a high power blower. The apparatus is designed to be mounted on a vehicle. A chemical or organic agent is loaded into a reservoir also mounted on the vehicle. By the use of a peristaltic pump, the chemical or organic agent is pumped into a nozzle and introduced into the wind flow, thereby allowing for airborne application of the agent. The apparatus has the ability to adjust the rate of the pump in accordance with a predetermined or constantly ascertained ground-speed. A user operates the vehicle and applies the chemical or organic agent at will.
Abstract:
A double-scrim belting (10) is described having a first woven scrim (12) and a spaced apart and substantially parallel second woven scrim (14) connected by staple fibers (18) consolidated together through entanglement and integrated with the scrims through entanglement, both entanglements being of the kind typically produced by needling. If desired, a non-woven web of staple fibers is needled to the outer surfaces of the scrims and the thusly formed belting is completely encapsulated in a matrix of elastomeric material 36. If the belting is intended to be used to convey food grade products, preferably an antibacterial agent is incorporated into the elastomeric material to inhibit bacterial growth.
Abstract:
A multi-layer article including a first non-active state and a second active state, the multi-layer article comprising an outer layer having a first side and a second side, an inner layer adjacent to at least a portion of the outer layer and including a volatile material, and an upper layer including a first side and a second side, the first side of the upper layer being adjacent to at least a portion of the inner layer. The multi-layer article is folded upon itself in the first non-active state so that at least a first portion of the second side of the upper layer is disposed on a top of a second portion of the second side of the upper layer, and the first portion and the second portion of the upper layer are heat sealed in the non-active state.
Abstract:
A method for producing fibers with improved color and anti-microbial properties is described. One embodiment includes a method for generating a halogen stable antimicrobial synthetic fiber, the method comprising creating a mixture that includes a polymer, an anti-microbial agent, and a non-halogen pigment, and extruding the mixture to form an anti-microbial synthetic fiber.
Abstract:
A method for producing fibers with improved color and anti-microbial properties is described. One embodiment includes a method for generating a halogen stable antimicrobial synthetic fiber, the method comprising creating a mixture that includes a polymer, an anti-microbial agent, and a non-halogen pigment, and extruding the mixture to form an anti-microbial synthetic fiber.
Abstract:
Molded plastic products having fine particles of copper-based compound with relatively low price, simple process and good economic feasibility and productivity, and method of manufacturing the products are provided. A chemical structure of the molded plastic products is CuxMy, wherein M is any one selected from groups 15 to 17 of the periodic table, x/y is 0.5-1.5. Also the molded plastic products comprises thermoplastic resin which contains dispersed therein copper-based particles reacts copper sulfate with any one salt, selected from among sulfuric salt, hydrofluoric salt and hydrochloric salt, at a molar ratio of 1:1 in an aqueous solution at a temperature of 10˜80° C.
Abstract:
A method for producing fibers with improved color and anti-microbial properties is described. One embodiment includes a method for generating a halogen stable antimicrobial synthetic fiber, the method comprising creating a mixture that includes a polymer, an anti-microbial agent, and a non-halogen pigment, and extruding the mixture to form an anti-microbial synthetic fiber.
Abstract:
A method of making a multi-layer biocidal structure includes providing a support and locating a first curable layer on the support. A second curable layer is located on the first curable layer, the second curable layer having multiple biocidal particles dispersed within the second curable layer. The first curable layer and the second curable layer are imprinted in a single step with an imprinting stamp having a structure with a depth greater than the thickness of the second curable layer. The first curable layer and the second curable layer are cured in a single step to form a first cured layer and a second cured layer. The imprinting stamp is removed.