Abstract:
A permanent mold casting powdery mold releasing agent according to this invention consists of a granulated or powdery mixture of a lubricant, an organic polymer and a metal soap; wherein the lubricant is coated with the organic polymer or the metal soap. Therefore, the mold releasing agent allows productions of castings of high quality, in a parmanent mold casting work, with good workability and without worsening environmental situations.
Abstract:
A lubricant to be sprayed onto the surface of a steel material for forming a lubricant coat on the surface of the steel material to be forged. The lubricant comprises a particulate lubricant composed of thermally melting resin mixed with inorganic lubricant. The particulate lubricant is applied onto the surface of a steel material to be forged. Before or after applying the particulate lubricant onto the surface of the steel material, the surface of the steel material is heated. Consequently, the thermally melting resin melts and coheres with the inorganic lubricant over the surface of the steel material, resulting in the formation of a uniformly thick lubricant coat over the steel material. The lubricant coat prevents the steel material from being burnt in a forging device even during hot forging. The lubricant coat is fit for the forging of hard to work steel material. The lubricant coat also contributes to the decrease in forging cost, without deteriorating the forging environment.
Abstract:
A die-casting powdery mold releasing agent according to this invention is a mold releasing agent comprising a mixture of powdery or granulated mold releasing base material composed of an inorganic compound as used for lubricant in a solid form and an organic compound giving adhesive property to the mold releasing agent, the both having powdery or granulated configurations, or configurations in which the organic compound is covered on the mold releasing base material. The mold releasing agent allows production of castings of high quality, in the die-casting method with good workability and without worsening environmental situations.
Abstract:
Sulfurized propylene based lube olefin derivatives are superior lubricating fluids with internal synergistic multifunctional extreme pressure/antiwear and antioxidant properties as well as multifunctional extreme pressure/antiwear additives for both mineral and synthetic lubricating oils as well as fuels.
Abstract:
Novel aqueous lubricant dispersions contain at least one rare earth halide, e.g., cerium trifluoride, and at least one polymeric dispersing agent therefor, such at least one dispersing agent including:(a) a copolymer of an ethylenically unsaturated carboxylic acid or derivative thereof with an .alpha.-olefin comonomer and/or a vinyl comonomer;(b) a homopolymer or copolymer of an ethylenically unsaturated carboxylic acid or derivative thereof;(c) a copolymer of at least one ethylenically unsaturated carboxylic acid and at least one ethylenically unsaturated sulfonic acid comonomer; and/or(d) a polymer of an alkylene oxide of an (arylalkyl)phenol, or phosphated or sulfated derivative thereof.
Abstract:
A solid lubricant combination comprising (a) 25 to 65 parts by weight graphite, (b) 15 to 45 parts by weight zinc sulfide, (c) 5 to 20 parts by weight antimony (III) sulfide, and (d) 5 to 20 parts by weight of an alkali earth metal phosphate, or other inorganic metal phosphate or mixtures of such phosphates which are commonly known as solid lubricants, is described. The solid lubricant combination is especially suitable as an additive to friction linings and results in an improvement in their tribological properties.
Abstract:
Asbestiform crystalline calcium M phosphate, where M is sodium or lithium, having a length to average diameter ratio of at least 5:1, can be prepared by forming a melt of a source of oxygen, calcium, phosphorus and M having a mole ratio of about 15 percent to about 30 percent M.sub.2 O, about 48 percent to about 60 percent P.sub.2 O.sub.5 and about 20 percent to about 37 percent CaO, cooling the melt within the range of about 500.degree. C. to about 750.degree. C. for a sufficient time to permit blocks of calcium M phosphate to form, and fiberizing the blocks into the asbestiform crystals. Such asbestiform crystalline calcium M phosphates are useful to prepare composites of organic polymeric materials.
Abstract:
Method and System of lubricating at least one moving part with a medium. The medium includes a dissolved mixture of lubricant and compressed gas. The amount of lubricant and compressed gas may be controlled in forming the dissolved mixture in response to input conditions. A user and/or external factors may be used to determine the input conditions. In response to the input conditions the amount of lubricant and compressed gas is delivered to the moving part that is housed in a pressurized chamber. The properties of the dissolved mixture can be adjusted, whereby the properties may include, but are not limited to, the following: viscosity, temperature, and thermal conductivity. This adjustment to the gas may be accomplished, for example, by releasing gas from the pressurized chamber in an amount to adjust the properties. In a further approach, lubricant may be scavenged from the pressurized chamber by returning surplus lubricant to its original source or other designated location.
Abstract:
A method for producing and commissioning a transmission with a water-based lubricant comprises the following steps. A mixture of a vaporizable liquid, a comminuted solid lubricant and a preserving agent (22) are applied (21) to the finished rotary parts (20) and then dried (23), whereby a coating forms on them. The rotary parts with the coating are installed in the transmission housing and the assembled transmission is filled with a cooling liquid (25), which is primarily essentially water. The transmission is put into operation for the first time (27), wherein the lubricant for the further operation is only formed by abrasion of the rotary parts and distribution of the abraded matter in the cooling liquid. The transmission is then ready for operation (28). Furthermore, a lubricant produced by this method is described.
Abstract:
A threaded joint for steel pipes comprised of a pin (1) and a box (2) each having a threaded portion (1a, 2b) and an unthreaded contact portion (1b, 2a) exhibits adequate leakage resistance and galling resistance when used for makeup of oil country tubular goods with application of a green dope or even without any dope. The threaded joint has a first plating layer of Sn—Bi—Cu alloy plating formed on the contact surface of at least one of the pin (1) or the box (2). The first plating layer may have a second plating layer selected from Sn plating, Cu plating, and Ni plating on its lower side and at least one layer of a lubricating coating, and particularly a solid lubricating coating on its upper side.