Abstract:
A photonic integrated circuit (PIC) comprises an optical switch, a plurality of input edge couplers comprising a first input edge coupler and coupled to the optical switch, a plurality of input surface grating couplers (SGCs) comprising a first input SGC and coupled to the optical switch, a plurality of output edge couplers comprising a first output edge coupler and coupled to the optical switch, and a plurality of output SGCs comprising a first output SGC and coupled to the optical switch. A method of fabricating a PIC comprises patterning and etching a silicon substrate to produce a first optical switch, a first surface grating coupler (SGC) coupled to the first optical switch, and a first edge coupler coupled to the first optical switch.
Abstract:
A cross-shaped infrared polarized light bridge based on a photonic crystal waveguide. The present invention aims to provide a polarized light bridge that is small in structural size, high in polarization degree, convenient to integrate, and highly efficient, besides which, crosstalk is not caused at a cross intersection. The cross-shaped infrared polarized light bridge comprises a photonic crystal waveguide provided with a complete bandgap. The photonic crystal waveguide is in a cross shape. Waveguide defect dielectric columns are disposed in the photonic crystal cross-shaped waveguide. The waveguide defect dielectric columns are square defect dielectric columns (6) and round defect dielectric columns (7). The photonic crystal cross-shaped waveguide comprises a vertical TE waveguide, a horizontal TM waveguide, a TM optical signal input port (1), a TM output port (3), a TE optical signal input port (2), and a TE output port (4). The two input ports (1,2) of the photonic crystal waveguide separately input a TM optical signal and a TE optical signal. Mutual influence is not caused at a cross intersection position of light circuits formed by the TM wave and the TE wave in a shared central area. The input TM optical signal is output from the TM output port (3). The input TE optical signal is output from the TE output port (4).
Abstract:
A silicon photonics device and system therefor. The silicon photonics device can include a 300 nm SOI (silicon-on-insulator with 300 nm top Si) overlying a substrate member. A waveguide structure can be configured from a portion of the SOI layer and disposed overlying the substrate member. This waveguide structure can include an AWG (Arrayed Waveguide Gratings) structure with 300 nm×300 nm symmetric grating waveguides or an Echelle grating structure characterized by a top silicon thickness of 300 nm. The waveguide structure can also include an index compensator material configured to provide at least two material index ratings in the waveguide structure.
Abstract:
A method for photonic device includes an optical macromodule substrate including optical interconnects and a first photonic integrated circuit (PIC) including a first photonic switch, where the first PIC is mechanically coupled to the optical macromodule substrate and optically coupled to the optical interconnect. The photonic device also includes a PIC controller electrically coupled to the first PIC.
Abstract:
A technique relates to a superchannel. Laser cavities include a first laser cavity, a next laser cavity, through a last laser cavity. Modulators include a first modulator, a next modulator, through a last modulator, each having a direct input, an add port, and an output. A concatenated arrangement of the laser cavities is configured to form the superchannel, which includes the last laser cavity coupled to the direct input of the last modulator, and the output of the last modulator coupled to the add port of the next modulator. The arrangement includes the next laser cavity coupled to direct input of the next modulator, and the output of the next modulator coupled to add port of first modulator, along with the first laser cavity coupled to direct input of the first modulator, and the output of first modulator coupled to input of a multiplexer, thus forming the superchannel into multiplexer.
Abstract:
A polarization beam splitter includes a demultiplexer, a multiplexer, a first waveguide at least partially formed of a rib waveguide, and a second arm waveguide at least partially formed of a channel waveguide. Waveguide widths of the first and second waveguides are configured to cause, with respect to a linear polarization component of an input light of the polarization beam splitter, 1) a first refractive index of the first arm waveguide and a second refractive index of the second arm waveguide to be the same, and 2) changes of the first and second refractive indexes, due to changes of the respective waveguide widths, to be the same.
Abstract:
Provided are a polarization beam splitter and an optical device with high productivity. A polarization beam splitter (PBS) according to an exemplary embodiment of the present invention includes: a demultiplexer (11) that is formed of a rib waveguide (50) and demultiplexes input light into first input light and second input light; a multiplexer (14) that is formed of the rib waveguide (50) and multiplexes the first input light and the second input light that are obtained by demultiplexing the input light by the demultiplexer (11); a first arm waveguide (12) that is formed of a channel waveguide (51) and guides the first input light to the multiplexer (11); and a second arm waveguide (13) that is formed of the channel waveguide (51), generates a phase difference in the first input light propagating through the first arm waveguide, and guides the second input light to the multiplexer (14).
Abstract:
Provided is an optical element having an optical waveguide region that can propagate azimuthally polarized light or radially polarized light while maintaining the direction of polarization. The optical element has a resin layer and an optical waveguide region that is formed in the resin layer and guides light in the lengthwise direction of the resin layer. Liquid crystal molecules are oriented in an approximately radiating shape in a cross section perpendicular to the lengthwise direction in the optical waveguide region, and the refractive index of the optical waveguide region is greater than that of the resin layer.
Abstract:
A low loss optical crossing and a method of making an optical crossing in a photonic integrated circuit. An optical crossing embodiment includes a crossing region having a crossing length, wherein a light path through the crossing region is laterally unbound; an input waveguide having an input crossing end and an input distal end, and coupled to the crossing region at the input crossing end, thereby partially forming the light path; and an output waveguide having an output crossing end and an output distal end, and coupled to the crossing region at the output crossing end, thereby partially forming the light path, wherein a crossing width of the output waveguide at the output crossing end is larger than a crossing width of the input waveguide at the input crossing end according to the crossing length.
Abstract:
A system for grating couplers incorporating perturbed waveguides is disclosed and may include, in a semiconductor photonics die, communicating optical signals into and/or out of said semiconductor die utilizing a grating coupler on the semiconductor photonics die, where the grating coupler includes perturbed waveguides as scattering elements, and the perturbed waveguides comprise rows of continuous waveguides defined by non-discrete scatterers. The perturbed waveguides may include a variable width along a length of the perturbed waveguides. The grating coupler may include a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating, or a polarization splitting grating coupler including two sets of rows of perturbed waveguides at a non-zero angle from each other. The polarization splitting grating coupler may include discrete scatterers at an intersection of the two sets of rows of perturbed waveguides and/or may include non-linear rows of discrete shapes at an intersection of the perturbed waveguides.