Abstract:
The invention provides immunotherapeutic and prophylactic bacteriophage viral-like particle (VLPs) which are useful in the treatment and prevention of human papillomavirus (HPV) infections and related disorders, including cervical cancer and persistent infections associated with HPV. Related compositions (e.g. vaccines), nucleic acid constructs, and therapeutic methods are also provided. VLPs and related compositions of the invention induce high titer antibody responses against HPV L2 and protect against HPV challenge in vivo. VLPs, VLP-containing compositions, and therapeutic methods of the invention induce an immunogenic response against HPV infection, confer immunity against HPV infection, protect against HPV infection, and reduce the likelihood of infection by HPV infection.
Abstract:
Various embodiments provide an exemplary lab-on-a-chip (LOC) system that serves as an analytical tool and/or as a separation medium for an electrolyte solution including various charged molecular species. The LOC system can include an integrated nanofluidic FET device in combination with suitable analysis systems. By applying and controlling a longitudinal electric field and a transverse electric potential, the flow and the pH of the electrolyte solution in the nanofluidic channels can be controlled.
Abstract:
Exemplary embodiments provide methods of forming semiconductor devices, by which defects formed upon nucleation and coalescence of semiconductor islands can be reduced or eliminated. In one embodiment, an annealing process can be performed prior to coalescence of the semiconductor islands into a continuous semiconductor layer. In another embodiment, high-quality Group III-V materials can be formed on the continuous semiconductor layer.
Abstract:
An optical absorption calorimeter performs absorbance measurements at low cryogenic temperatures, such as above 0K to 5K (e.g. near liquid helium temperature), using high-resolution thermometry with SQUID readout to probe optical absorption to better than 1 ppb. This improved sensitivity yields improved performance in calorimetric absorption spectroscopy by lowering the required excitation power, improving the spectral resolution, and opening up the full spectrum, from near-IR to near-UV and beyond for analysis.
Abstract:
An intubating stylet has a proximal end and a distal end. The intubating stylet includes a housing at the proximal end of the stylet and a tip portion at the distal end of the stylet. The tip portion has a distal gear at its proximal end. An outer shaft extends from the housing to the tip portion and contains an inner shaft defining a hollow lumen. A distal end of the inner shaft includes a proximal gear coupled with the distal gear of the tip portion such that rotation of the inner shaft causes articulation of the tip portion. The stylet further includes a drive member in the housing and a control member coupled with the drive member. The drive member is coupled to the inner shaft and configured to rotate the inner shaft, and the control member is configured to receive a user input and to translate the input into operation of the drive member.
Abstract:
Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. “Color” imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 μm to about 12 μm as well as the mid-wave portion ranging from about 3 μm to about 5 μm.
Abstract:
A dry powder inhaler may include a drug chamber configured to contain a formulation including carrier particles and working agent particles, a mouthpiece configured to direct flow of working agent particles to a user, and a retaining member proximal the mouthpiece. The retaining member be sized and arranged to prevent flow of substantially all carrier particles to the user while permitting flow of working agent particles to a user. The inhaler may include a formulation including carrier particles for delivering working agent to the pulmonary system of a patient. The carrier particles may have an average sieve diameter greater than about 500 μm. The carrier particles may be one of polystyrene, PTFE, silicone glass, and silica gel or glass.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.