-
公开(公告)号:US20220351713A1
公开(公告)日:2022-11-03
申请号:US17813361
申请日:2022-07-19
Applicant: Google LLC
Inventor: Ye Jia , Zhifeng Chen , Yonghui Wu , Jonathan Shen , Ruoming Pang , Ron J. Weiss , Ignacio Lopez Moreno , Fei Ren , Yu Zhang , Quan Wang , Patrick An Phu Nguyen
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for speech synthesis. The methods, systems, and apparatus include actions of obtaining an audio representation of speech of a target speaker, obtaining input text for which speech is to be synthesized in a voice of the target speaker, generating a speaker vector by providing the audio representation to a speaker encoder engine that is trained to distinguish speakers from one another, generating an audio representation of the input text spoken in the voice of the target speaker by providing the input text and the speaker vector to a spectrogram generation engine that is trained using voices of reference speakers to generate audio representations, and providing the audio representation of the input text spoken in the voice of the target speaker for output.
-
公开(公告)号:US11488575B2
公开(公告)日:2022-11-01
申请号:US17055951
申请日:2019-05-17
Applicant: Google LLC
Inventor: Ye Jia , Zhifeng Chen , Yonghui Wu , Jonathan Shen , Ruoming Pang , Ron J. Weiss , Ignacio Lopez Moreno , Fei Ren , Yu Zhang , Quan Wang , Patrick Nguyen
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for speech synthesis. The methods, systems, and apparatus include actions of obtaining an audio representation of speech of a target speaker, obtaining input text for which speech is to be synthesized in a voice of the target speaker, generating a speaker vector by providing the audio representation to a speaker encoder engine that is trained to distinguish speakers from one another, generating an audio representation of the input text spoken in the voice of the target speaker by providing the input text and the speaker vector to a spectrogram generation engine that is trained using voices of reference speakers to generate audio representations, and providing the audio representation of the input text spoken in the voice of the target speaker for output.
-
公开(公告)号:US11232356B2
公开(公告)日:2022-01-25
申请号:US16989787
申请日:2020-08-10
Applicant: Google LLC
Inventor: Zhifeng Chen , Yanping Huang , Youlong Cheng , HyoukJoong Lee , Dehao Chen , Jiquan Ngiam
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training giant neural networks. One of the methods includes obtaining data specifying a partitioning of the neural network into N composite layers that form a sequence of composite layers, wherein each composite layer comprises a distinct plurality of layers from the multiple network layers of the neural network; obtaining data assigning each of the N composite layers to one or more computing devices from a set of N computing devices; partitioning a mini-batch of training examples into a plurality of micro-batches; and training the neural network, comprising: performing a forward pass through the neural network until output activations have been computed for each micro-batch for a final composite layer in the sequence, and performing a backward pass through the neural network until output gradients have been computed for each micro-batch for the first composite layer in the sequence.
-
公开(公告)号:US20210366463A1
公开(公告)日:2021-11-25
申请号:US17391799
申请日:2021-08-02
Applicant: Google LLC
Inventor: Samuel Bengio , Yuxuan Wang , Zongheng Yang , Zhifeng Chen , Yonghui Wu , Ioannis Agiomyrgiannakis , Ron J. Weiss , Navdeep Jaitly , Ryan M. Rifkin , Robert Andrew James Clark , Quoc V. Le , Russell J. Ryan , Ying Xiao
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
-
公开(公告)号:US20210279465A1
公开(公告)日:2021-09-09
申请号:US16812154
申请日:2020-03-06
Applicant: Google LLC
Inventor: Jonathon Shlens , Vijay Vasudevan , Jiquan Ngiam , Wei Han , Zhifeng Chen , Brandon Chauloon Yang , Benjamin James Caine , Zhengdong Zhang , Christoph Sprunk , Ouais Alsharif , Junhua Mao , Chen Wu
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing data generated by a sensing system that rotationally senses an environment. In one aspect, a method comprises partitioning a predetermined period of time into a plurality of sub-periods, wherein the predetermined period of time is a period of time for which data generated by the sensing system constitutes a complete rotational sensing of the environment; for each sub-period: receiving current data generated by the sensing system during the sub-period and characterizing a respective partial scene of the environment; processing the current data using an object detection neural network to generate a current object detection output that is specific to the respective partial scene of the environment.
-
公开(公告)号:US11113480B2
公开(公告)日:2021-09-07
申请号:US16336870
申请日:2017-09-25
Applicant: GOOGLE LLC
Inventor: Mohammad Norouzi , Zhifeng Chen , Yonghui Wu , Michael Schuster , Quoc V. Le
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for neural machine translation. One of the systems includes an encoder neural network comprising: an input forward long short-term memory (LSTM) layer configured to process each input token in the input sequence in a forward order to generate a respective forward representation of each input token, an input backward LSTM layer configured to process each input token in a backward order to generate a respective backward representation of each input token and a plurality of hidden LSTM layers configured to process a respective combined representation of each of the input tokens in the forward order to generate a respective encoded representation of each of the input tokens; and a decoder subsystem configured to receive the respective encoded representations and to process the encoded representations to generate an output sequence.
-
公开(公告)号:US20200098350A1
公开(公告)日:2020-03-26
申请号:US16696101
申请日:2019-11-26
Applicant: Google LLC
Inventor: Samuel Bengio , Yuxuan Wang , Zongheng Yang , Zhifeng Chen , Yonghui Wu , Ioannis Agiomyrgiannakis , Ron J. Weiss , Navdeep Jaitly , Ryan M. Rifkin , Robert Andrew James Clark , Quoc V. Le , Russell J. Ryan , Ying Xiao
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
-
公开(公告)号:US20200043483A1
公开(公告)日:2020-02-06
申请号:US16529252
申请日:2019-08-01
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Tara N. Sainath , Yonghui Wu , Patrick An Phu Nguyen , Zhifeng Chen , Chung-Cheng Chiu , Anjuli Patricia Kannan
IPC: G10L15/197 , G10L15/16 , G10L15/22 , G10L15/06 , G10L15/02
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-readable storage media, for speech recognition using attention-based sequence-to-sequence models. In some implementations, audio data indicating acoustic characteristics of an utterance is received. A sequence of feature vectors indicative of the acoustic characteristics of the utterance is generated. The sequence of feature vectors is processed using a speech recognition model that has been trained using a loss function that uses N-best lists of decoded hypotheses, the speech recognition model including an encoder, an attention module, and a decoder. The encoder and decoder each include one or more recurrent neural network layers. A sequence of output vectors representing distributions over a predetermined set of linguistic units is obtained. A transcription for the utterance is obtained based on the sequence of output vectors. Data indicating the transcription of the utterance is provided.
-
公开(公告)号:US20200034435A1
公开(公告)日:2020-01-30
申请号:US16336870
申请日:2017-09-25
Applicant: GOOGLE LLC
Inventor: Mohammad Norouzi , Zhifeng Chen , Yonghui Wu , Michael Schuster , Quoc V. Le
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for neural machine translation. One of the systems includes an encoder neural network comprising: an input forward long short-term memory (LSTM) layer configured to process each input token in the input sequence in a forward order to generate a respective forward representation of each input token, an input backward LSTM layer configured to process each input token in a backward order to generate a respective backward representation of each input token and a plurality of hidden LSTM layers configured to process a respective combined representation of each of the input tokens in the forward order to generate a respective encoded representation of each of the input tokens; and a decoder subsystem configured to receive the respective encoded representations and to process the encoded representations to generate an output sequence.
-
公开(公告)号:US20200027444A1
公开(公告)日:2020-01-23
申请号:US16516390
申请日:2019-07-19
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-Cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A.U. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
Abstract: Methods, systems, and apparatus, including computer-readable media, for performing speech recognition using sequence-to-sequence models. An automated speech recognition (ASR) system receives audio data for an utterance and provides features indicative of acoustic characteristics of the utterance as input to an encoder. The system processes an output of the encoder using an attender to generate a context vector and generates speech recognition scores using the context vector and a decoder trained using a training process that selects at least one input to the decoder with a predetermined probability. An input to the decoder during training is selected between input data based on a known value for an element in a training example, and input data based on an output of the decoder for the element in the training example. A transcription is generated for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
-
-
-
-
-
-
-
-