Abstract:
It is a biped (two-footed) walking humanoid robot, which is provided with drive motors (11d, 11e, 18L, 18R-24L, 24R, 28L, 28R-33L, 33R, 35, 36) to pivotally move respective joint portions, and a motion control apparatus (40) to drive-control respective drive motors, and said motion control apparatus (40), together with a detector (45) to detect the robot's current posture and others, compares the robot's detected current posture and others with next motion command input from outside, and if next motion command is within the range of stability limit with respect to the robot's current posture and others, the complementary data with respect to intermediate motion from current posture till initial posture of next motion command and the motion data corresponding to next motion command are generated, each drive motor is drive-controlled based on said complementary and motion data, and thereby various motions are conducted smoothly and continually. It is preferably provided with a motion library (41a) storing time series data of basic motions as the elements of the robot's motions and posture data consisting of algorithm, reads out the corresponding posture data from said motion library, and generates complementary and motion data as the combined motion sequence.
Abstract:
The present invention provides a biped (two-footed) walking mobile system, its walk controller, and walk control method therefore, which are to realize enhancing an walk stability, as well as a consumed energy saving. A walk controller (30) of a biped walking mobile system forms a gait data by a gait forming part (33) based on parameters from a gait stabilizing part (32), and drive-controls drive means of respective joint portions (15L, 15R-20L, 20R) of each leg portion based on said gait data. In this case, the walk controller (30) is so constituted as to selectively witch a powered mode to conduct ordinary drive-control and a passive mode to drive-control the drive means similarly with passive joints, whereby drive-controlling respective joint portions. The walk controller (30) preferably switches the drive and passive modes with respect to, for example, joint portions of knee and foot portions, or switches to the powered mode for kick-up and landing during walking motion, and to the passive mode for a free foot state.
Abstract:
A circuit designing method and apparatus for the design of a large-scale logic circuit. A circuit configuration for a Programmable Logic Device (PLD) is revised in response to a genetic algorithm and then a logic circuit for providing a target output is designed. A collection of grammar rules for feeding out the PLD circuit configuration is applied as a chromosome, and the chromosome (a collection of grammar rules) is revised to feed out the chromosome giving the most suitable circuit configuration. The chromosome length is proportional to the number of grammar rules and does not depend upon the scale of the PLD circuit. Consequently, even for a large PLD circuit, it is possible to design the circuit configuration within a suitable calculating time.