Abstract:
A hinge mechanism includes a first rotation assembly, a second rotation assembly substantially parallel to the first rotation assembly, a first connection member, and a second connection member. The first and second rotation assemblies include a first and second pivoting shafts and a first and second brackets sleeved on the first and second pivoting shafts, respectively, and both the first and second brackets includes an engaging portion eccentrically formed on one end respectively thereof. The first connection member includes two pivotal portions. The pivotal portions are rotatably connected to the engaging portions of the first bracket and the second bracket, respectively. The second connection member is sleeved on the first pivoting shaft and the second pivoting shaft.
Abstract:
A support stand for display device includes a base seat, an elevating support, and a locking module detachably connected the elevating support to the base seat. The locking module includes a fixing member, a rotating member, an elastic member, and a latching member. The fixing member is fixed on one of the base seat and the elevating support, and the fixing member defines a gap and a latching groove. The rotating member is rotatably extended through the other one of the base seat and the elevating support, and the fixing member. The elastic member is sleeved on the rotating member, and abuts on the fixing member. The latching member is fixed on an end of the rotating member. The latching member is extended through the gap of the fixing member, and is engaged in the latching groove of the fixing member.
Abstract:
A hinge assembly includes a first pivot unit including a shaft, a bracket, an engaging member, a locking member, and an elastic member. The shaft has a non-circular sleeve portion. The bracket is rotatably sleeved on the shaft. The engaging member has a sleeving hole with a shape substantially corresponding to a cross-section of the sleeve portion of the shaft. The locking member has a sleeving hole with a shape substantially corresponding to a cross-section of the sleeve portion of the shaft. The locking member is non-rotatably latched to the engaging member. The elastic member is sleeved on the shaft to resist the components on the shaft.
Abstract:
A hinge mechanism includes two pivot shafts substantially parallel to each other, two main gears non-rotatably respectively sleeved on the pivot shafts, a transmission assembly positioned between the two pivot shafts to transmit a torque of one of the two main gears to the other in a reverse direction, and a connecting member defining two shaft holes. The pivot shafts are respectively rotatably received in the shaft holes. Two contact assemblies are respectively mounted on the pivot shafts abutting the connecting member. One of the connecting member and each main gear forms at least one detent, and the other defines at least one recess correspondingly. The at least one detent is received in the at least one recess.
Abstract:
A support stand includes a support body, a connecting member, a fastening assembly. The support body defines an assembling hole. The connecting member is received in the assembling hole of the support body, and defines an engaging hole. The fastening assembly is positioned on the support body. The fastening assembly includes a follower. The follower has a positioning pole. The follower is movably connected to the support body, so that the positioning pole is capable of engaging/disengaging in the engaging hole of the connecting member.
Abstract:
A hinge assembly includes a shaft, a rotary member, and a tube. The rotary member includes a friction body and is fixed to the shaft. The tube rotatably engages with the friction body of the rotary member. When the tube rotates to a predetermined position relative to the rotary member, the friction body deforms, thereby generating friction between the friction body and the tube.
Abstract:
A hinge assembly includes a stationary member, a rotating member, and a pivotal shaft. The stationary member forms a position protrusion. The rotating member defines a receiving depression to receive the position protrusion. The pivotal shaft includes an elastic portion. The stationary member and the rotating member are positioned on the pivotal shaft such that the position protrusion is received in the receiving depression. The rotating member is non-rotatable relative to the pivotal shaft. The stationary member is rotatable relative to the pivotal shaft. The elastic portion deforms to push the rotating member to firmly engage the stationary member.
Abstract:
A hinge assembly includes a first pivot shaft, a second pivot shaft, a third pivot shaft, a first bracket, a second bracket, a first meshing wheel, a second meshing wheel, a third meshing wheel, and a transmission belt member sleeved on both the first meshing wheel and the third meshing wheel. The first pivot shaft, the second pivot shaft, and the third pivot shaft are substantially parallel. The first and second brackets are non-rotatably sleeved on the first and second pivot shafts, respectively. The third meshing wheel is disposed between the first meshing wheel and the second meshing wheel, and meshes with the second meshing wheel and the transmission belt member. An electronic device using the hinge assembly is also provided.