TUBE-CUT HELICAL FIXATION ANCHOR FOR ELECTROTHERAPY DEVICE

    公开(公告)号:US20230023767A1

    公开(公告)日:2023-01-26

    申请号:US17959216

    申请日:2022-10-03

    Abstract: An implantable medical device is disclosed herein and can be in the form of an implantable medical lead or a leadless pulse generator. The implantable medical device includes a body, at least one electrode and a tube-cut helical fixation anchor. The body includes a distal end and a proximal end opposite the distal end. The at least one electrode is supported on the body. The tube-cut helical fixation anchor distally extends from the distal end. The tube-cut helical fixation anchor may be fixed or extendable/retractable relative to the distal end. The tube-cut helical fixation anchor may be a result of a manufacturing process comprising cutting the tube-cut helical fixation anchor from a thin-walled tubular body.

    DEVICES, SYSTEMS AND METHODS FOR IMPROVING CONDUCTIVE COMMUNICATION BETWEEN EXTERNAL DEVICES AND IMPLANTABLE MEDICAL DEVICES

    公开(公告)号:US20220212019A1

    公开(公告)日:2022-07-07

    申请号:US17701132

    申请日:2022-03-22

    Abstract: Described herein are external devices, and methods for use therewith, that are configured to communicate with one or more implantable medical devices (IMDs) implanted within a patient using conductive communication, wherein the external device includes or is communicatively coupled to at least three external electrodes that are in contact with the patient. Certain such methods involve the external device identifying, for each IMD, of the plurality of IMDs, which one of the plurality of communication vectors is a preferred communication vector for communicating with the IMD, based on respective indicators of conductive communication quality that are determined for the plurality of communication vectors. Certain embodiments involve determining when there should be a reassessment of which one of the plurality of communication vectors is the preferred communication vector for communicating with an IMD, and in response thereto, identifying an updated preferred communication vector for communicating with the IMD.

    Biostimulator having fixation element

    公开(公告)号:US11185704B2

    公开(公告)日:2021-11-30

    申请号:US16181154

    申请日:2018-11-05

    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.

    ENHANCED IMPLANT-TO-IMPLANT COMMUNICATIONS USING ACCELEROMETER

    公开(公告)号:US20210330986A1

    公开(公告)日:2021-10-28

    申请号:US17370210

    申请日:2021-07-08

    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerator output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.

    REMOTE FOLLOW-UP METHODS, SYSTEMS, AND DEVICES FOR LEADLESS PACEMAKER SYSTEMS

    公开(公告)号:US20210308470A1

    公开(公告)日:2021-10-07

    申请号:US17222242

    申请日:2021-04-05

    Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.

    SYSTEMS AND METHODS FOR PERFORMING PACING USING MULTIPLE LEADLESS PACEMAKERS

    公开(公告)号:US20210290965A1

    公开(公告)日:2021-09-23

    申请号:US17330684

    申请日:2021-05-26

    Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.

    Systems and methods for performing pacing using leadless pacemakers

    公开(公告)号:US11097113B2

    公开(公告)日:2021-08-24

    申请号:US16241378

    申请日:2019-01-07

    Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 uses at least two of its electrodes to transmit and receive implant-to-implant (i2i) messages to and from the LP2. During one or more periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. During one or more further periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP1 from the LP2.

    Systems and methods for performing pacing using multiple leadless pacemakers

    公开(公告)号:US11071872B2

    公开(公告)日:2021-07-27

    申请号:US16241397

    申请日:2019-01-07

    Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.

    TERMINATING PACEMAKER MEDIATED TACHYCARDIA (PMT) IN DUAL CHAMBER LEADLESS PACEMAKER SYSTEM

    公开(公告)号:US20210205628A1

    公开(公告)日:2021-07-08

    申请号:US17209536

    申请日:2021-03-23

    Abstract: An implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), and methods for use therewith, are configured or used to terminate a pacemaker mediated tachycardia (PMT). In an embodiment, in response to the aLP detecting a PMT, the aLP initiates a PMT PA interval, and the aLP does not inform the vLP, via an i2i communication, of an atrial sensed event that caused the PMT to be detected, thereby preventing the vLP from initiating a PV interval during the PMT PA interval. The aLP selectively terminates the PMT PA interval. Additionally, the aLP informs the vLP, via an i2i communication, of an intrinsic atrial event being detected during the PMT PA interval, or of an atrial paced event being performed in response to the PMT PA interval expiring without an intrinsic atrial event being detected during the PMT PA interval.

Patent Agency Ranking