Abstract:
A method of manufacturing a thin film transistor liquid crystal display device. The method includes the steps of providing a first substrate and a second substrate, the first substrate positioned facing the second substrate; forming a black matrix layer on the first substrate, the black matrix layer including an opening exposing the first substrate; forming a coating layer on the black matrix layer and the opening; forming a light shielding layer on the second substrate facing the opening, the area of the light shielding layer being larger than the area of the opening; forming a insulator layer on the light shielding layer and the second substrate; and forming a sealant layer between the coating layer and the insulator layer. The method of the present invention increases the adhesive strength between the black matrix and the substrate.
Abstract:
An input buffer capable of high voltage operation includes a transmission gate connected to a boosting voltage source. The input buffer can be used to maintain the processing speed and noise margin of a digital circuit even through the input voltage thereof is excessively high. Moreover, the input buffer can be used in an address latch or inverter-type circuit.
Abstract:
A liquid crystal panel includes a plurality of pixel units, each of which include gating lines, data lines, a pixel electrode and a thin film transistor (TFT). Common electrodes of first pixel units in a same row are electrically connected via a first common line, and common electrodes of second pixel units in the same row are electrically connected via a second common line. The first common line is connected with a first common voltage and the second common voltage is connected with a second common voltage. The first common voltage and the second common voltage are alternating current voltages and have opposite polarities in the same frame. The liquid crystal panel can decrease power consumption of a source driver and lower cost of the liquid crystal panel.
Abstract:
An array substrate of a liquid crystal display, comprising a first scan line and a second scan line, a first data line and a second data line arranged crossing with the first scan line and the second scan line to define a pixel region, and a pixel electrode in the pixel region, wherein the second data line comprises at least a first branch and a second branch that are electrically connected to each other. According to the invention, it is not necessary to provide the array substrate with additional space for disposing repair lines, and the non-display region is therefore not increased, resulting in an increased yield. Only a short length of repair lines is used in repair, and thus both electrical resistance of repair line and distortion of data signals can be reduced.
Abstract:
The invention provides a thin film transistor (TFT) substrate comprises a plurality of gate lines, a plurality of data lines, gate terminals, data terminals and thin film transistors as well as a liquid crystal display (LCD) device having the TFT substrate. The gate terminal and/or data terminal contain a first portion and a second portion, and the first potion and the second portion are connected electrically with an end electrode made of a material which is anticorrosive in the air. The thin film transistor substrate of the invention prevents the spreading of the metal corrosion occurred at the gate leads to the display region of the LCD, and therefore the quality of the LCD device can be ensured.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
The invention discloses a liquid crystal display panel, comprising pixel electrodes, common electrode lines, data lines and scanning lines, wherein at least two of the scanning lines are electrically connected to each other. The liquid crystal display panel has a plurality of conductive sections are disposed above at least part of each of the scanning lines other than said at least two scanning lines and electrically connected to the common electrode lines. The liquid crystal display panel of the invention can use Dot Inversion Driving with low power consumption. Meanwhile, the invention improves consistency of the RC delays on the individual scanning lines, decreases the difference among the RC delays of scanning signals on all of the scanning lines, and thereby achieves uniformity of a display frame on the liquid crystal display panel.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
The invention provides a thin film transistor (TFT) substrate comprises a plurality of gate lines, a plurality of data lines, gate terminals, data terminals and thin film transistors as well as a liquid crystal display (LCD) device having the TFT substrate. The gate terminal and/or data terminal contain a first portion and a second portion, and the first potion and the second portion are connected electrically with an end electrode made of a material which is anticorrosive in the air. The thin film transistor substrate of the invention prevents the spreading of the metal corrosion occurred at the gate leads to the display region of the LCD, and therefore the quality of the LCD device can be ensured.
Abstract:
A liquid crystal display (LCD) substrate and a fabrication method thereof are provided. The LCD substrate comprises a substrate, a spacer definition layer formed on the substrate comprising a first step, and a spacer formed along a profile of the first step of spacer definition layer and adjacent to the first step, thereby forming a second step on the spacer. The invention utilizes a single photolithographic process to form spacers with steps, thus, effectively lowering the probability of mura defects caused by gravity, contact, or an uneven cell gap.