Robot balance control method, computer-readable storage medium and robot

    公开(公告)号:US11604466B2

    公开(公告)日:2023-03-14

    申请号:US17120232

    申请日:2020-12-13

    Abstract: A robot balance control method includes: obtaining force information associated with a left foot and a right foot of the robot; calculating a zero moment point of a center of mass (COM) of a body of the robot based on the force information; calculating a first position offset and a second position offset of the robot according to the zero moment point of the COM of the body; updating a position trajectory of the robot according to the first position offset and the second offset to obtain an updated position of the COM of the body; performing inverse kinematics analysis on the updated position of the COM of the body to obtain joint angles of the left leg and the right leg of the robot; and controlling the robot to move according to the joint angles.

    CONTROL METHOD FOR ROBOT, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20220203522A1

    公开(公告)日:2022-06-30

    申请号:US17561629

    申请日:2021-12-23

    Abstract: A robot control method includes: determining a planned capture point and a measured capture point of the robot so as to calculate a capture point error of the robot; obtaining positions of a left foot and a right foot of the robot, and a planned zero moment point (ZMP) of the robot so as to calculate desired support forces of the left foot and the right foot; calculating desired torques of the left foot and the right foot according to the capture point error, the desired support forces of the left foot and the right foot; obtaining measured torques of the left foot and the right foot so as to calculate desired poses of the left foot and the right foot; and controlling the robot to walk according to the desired poses of the left foot and the desired pose of the right foot.

    CONTROL METHOD FOR ROBOT, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20220203521A1

    公开(公告)日:2022-06-30

    申请号:US17561609

    申请日:2021-12-23

    Abstract: A control method for a robot includes: determining a desired zero moment point (ZMP) of the robot; obtaining a position of a left foot and a position of a right foot of the robot, and calculating desired support forces of the left foot and the right foot according to the desired ZMP, the positions of the left foot and the right foot; obtaining measured support forces of the left foot and the right foot, and calculating an amount of change in length of the left leg and an amount of change in length of the right leg according to the desired support forces of the left foot and the right foot, the measured support forces of the left foot and the right foot; and controlling the robot to walk according to the amount of change in length of the left leg and the right leg.

    Biped robot gait control method and biped robot

    公开(公告)号:US11230001B2

    公开(公告)日:2022-01-25

    申请号:US16572637

    申请日:2019-09-17

    Abstract: There are a biped robot gait control method and a biped robot, where the method includes: obtaining six-dimensional force information, and determining a motion state of two legs of the biped robot; calculating a ZMP position of each of two legs of the biped robot; determining a ZMP expected value of each of the two legs in real time; obtaining a compensation angle of an ankle joint of each of the two legs of the biped robot by inputting the ZMP position, a change rate of the ZMP position, the ZMP expected value, and a change rate of the ZMP expected value to an ankle joint smoothing controller so as to perform a close-loop ZMP tracking control on each of the two legs; adjusting a current angle of the ankle joint of each of the two legs of the biped robot in real time; and repeating the forgoing steps.

    BIPED ROBOT EQUIVALENT TRAJECTORY GENERATING METHOD AND BIPED ROBOT USING THE SAME

    公开(公告)号:US20190196477A1

    公开(公告)日:2019-06-27

    申请号:US16231512

    申请日:2018-12-23

    CPC classification number: G05D1/027 G05D1/0272 G05D2201/0217

    Abstract: The present disclosure provides an equivalent trajectory generating method for a biped robot and a biped robot using the same. The method includes: obtaining a motion state of the biped robot by a position sensor; determining switching moments in an advancing direction of the biped robot, based on the motion state of the biped robot; finding the mass center position of the biped robot at each switching moment; connecting the mass center positions at the switching moments as an equivalent trajectory of the biped robot; and performing a closed loop control on the biped robot according to the equivalent trajectory. Through the method, the overall real-time position of the robot can be obtained according to the equivalent trajectory effectively, which is advantageous to perform a stable and reliable control to the biped robot according to the equivalent trajectory of the biped robot.

Patent Agency Ranking