Abstract:
An aircraft attitude control configuration enables control surfaces to provide attitude control for an aircraft at hover or low air speed conditions. The aircraft attitude control configuration includes a plurality of thrusters mounted to an aircraft for thrusting air, a first control surface kinematically coupled to the aircraft at a position downstream of a first thruster to enable a first vector force to be generated by a portion of the thrusted air from the first thruster on the first control surface, and a second control surface kinematically coupled to the aircraft at a position downstream of a second thruster, the first and the second control surfaces being displaced symmetrically on opposite sides of a longitudinal axis of the aircraft, the second control surface being configured to be independently and differentially movable with respect to the first control surface to enable a second vector force to be generated by a portion of the thrusted air from the second thruster on the second control surface.
Abstract:
An aircraft 1 with a spiral inducing assembly 2 which is capable of inducing the aircraft to travel in a continuous spiraling motion without the aircraft rolling. A ramjet 6b is attached to a tube 3a that is able to rotate around the encircled part of the fuselage. The ramjet 6b is able to rotate in a pivoting manner on the rotate-able tube 3a with respect to the rotate-able tube 3a, thereby changing their pitch relative to the longitudinal axis of the rotate-able tube 3a. Ramjet 6b is rotated as is another ramjet on the right side of the tube 3a. The rotate-able tube 3a is rotated by means of an electric motor 3b rotating a wheel 3c. The difference in degree of rotation between the ramjets makes the ramjet 6b exert a greater force on the rotate-able tube 3a than the ramjet on the right side when the ramjets are rotated in the same direction. The imbalance between the rotational forces thus causes the rotate-able tube 3a to rotate. When rotated, the ramjets would exert a lateral force on the rotate-able tube 3a. Thus, the ramjets would push the rotate-able tube sideways. But as the rotate-able tube is pushed sideways, it rotates, and hence the lateral direction of push constantly revolves, causing a spiraling motion of the aircraft when in flight.
Abstract:
An aircraft attitude control configuration enables control surfaces to provide attitude control for an aircraft at hover or low air speed conditions. The aircraft attitude control configuration includes a thruster mounted to an aircraft for thrusting air, a first control surface kinematically coupled to the aircraft at a position downstream of the thruster, and a second control surface kinematically coupled to the aircraft at a position downstream of the thruster, the second control surface being differentially movable with respect to the first control surface such that a portion of the thrusted air from the thruster generates a first vector force on the first control surface and another portion of the thrusted air generates a second vector force on the second control surface, so that the first and the second vector forces provide a net roll moment about the Y-Roll axis.
Abstract:
An aircraft attitude control configuration enables control surfaces to provide attitude control for an aircraft at hover or low air speed conditions. The aircraft attitude control configuration includes a thruster mounted to an aircraft for thrusting air, a first control surface kinematically coupled to the aircraft at a position downstream of the thruster, and a second control surface kinematically coupled to the aircraft at a position downstream of the thruster, the second control surface being differentially movable with respect to the first control surface such that a portion of the thrusted air from the thruster generates a first vector force on the first control surface and another portion of the thrusted air generates a second vector force on the second control surface, so that the first and the second vector forces provide a net roll moment about the Y-Roll axis.
Abstract:
An aircraft 1 in the form of an airplane with a spiral inducing assembly 2 which is capable of inducing the airplane to travel in a continuous spiralling motion without rolling. Two fins 3 and 4 are attached to a tube 5 that is able to rotate around the encircled part of the fuselage. The fins 3, 4 are able to rotate in a pivoting manner on the rotatable tube 5 with respect to the rotatable tube 5, thereby changing their pitch relative to the longitudinal axis of the rotatable tube 5. Fin 3 is larger than fin 4. The diferene in sizes between the fins makes the larger fin 3 exert a greater force on the rotatable tube 4 than the smaller fin 4 when the fins are pitched in unison. The aerodynamic imbalance between the fins thus casues the rotatable tube 5 to rotate. When pitched at an angle to the longitudinal axis in unison, both fins 3, 4 would exert a lateral force on the rotatable tube 5. Thus, as well as forcing the rotatable tube 5 to rotate, the fins 3, 4 would also push the rotatable tube sideways. But as the rotatable tube is pushed sideways, it rotates, and hence the lateral direction of push constantly revolves, causing a spiralling motion when in flight.
Abstract:
A cross-section of a missile 1 with the missile attachment 2. The missile attachment consists of a cylindrical tube 3 which encircles part of the missile 1, and a protruding section 4 with a concave forward facing surface area 5. Shown also is a friction inducing movable component in the form of a lever 11 pivotly attached to the missile by a bracket 12, such that the lever 11 can be pivotly moved an actuating mechanism which is in the form of an electric motor 13 using a rotor arm 14. When the lever is pivoted by the electric motor 13, using the rotor arm 14, a part of the lever is pressed through a hole 15 in the missile 1 so that the part of the lever that is pressed through the hole can reach the cylindrical tube. As the rotor arm 14 presses harder against the lever, the lever is pressed harder against the cylindrical tube. With the friction that occurs between the lever and the cylindrical tube, the rotation of the cylindrical tube relative to the missile can be controlled, so that the spiralling motion of the missile can be controlled. A computer 16 controls the action of the electric motor 13, and a battery 17 provides electrical power for the computer and the electrical motor.
Abstract:
An aircraft 1 in the form of an aeroplane with a spiral inducing assembly 2 which is capable of inducing the aeroplane to travel in a continuous spiralling motion without rolling. Two fins 3 and 4 are attached to a tube 5 that is able to rotate around the encircled part of the fuselage. The fins 3, 4 are able to rotate in a pivoting manner on the rotatable tube 5 with respect to the rotatable tube 5, thereby changing their pitch relative to the longitudinal axis of the rotatable tube 5. Fin 3 is larger than fin 4. The diferene in sizes between the fins makes the larger fin 3 exert a greater force on the rotatable tube 4 than the smaller fin 4 when the fins are pitched in unison. The aerodynamic imbalance between the fins thus casues the rotatable tube 5 to rotate. When pitched at an angle to the longitudinal axis in unison, both fins 3, 4 would exert a lateral force on the rotatable tube 5. Thus, as well as forcing the rotatable tube 5 to rotate, the fins 3, 4 would also push the rotatable tube sideways. But as the rotatable tube is pushed sideways, it rotates, and hence the lateral direction of push constantly revolves, causing a spiralling motion when in flight.
Abstract:
A maneuvering system for a flight vehicle rotates a lifting aerodynamic surface of the flight vehicle about an axis parallel with a direction of flight of the vehicle in a rotational direction corresponding to the desired change of flight direction to which the vehicle is to be steered, while maintaining attitude stability of the flight vehicle by altering other aerodynamic surfaces of the vehicle.
Abstract:
A flap (22) carries a guide roller (24) at each of its ends. Each guide roller (24) travels within a fore and aft track (28) positioned immediately endwise outwardly of its end of the flap (22). The flap (22) is extended and retracted by means including a reaction link (36) and a two-way linear actuator (38). The actuator (38) and the reaction link (36) are pivotally connected at their forward ends to the outer end of a bell crank arm (34), for pivotal movement about a common axis (40). At its rearward end the actuator (38) is pivotally attached to the flap at a location (44) offset above the roller (24). The reaction link (36) is pivotally attached at its rearward end to the flap (22) at a location (42) offset below the roller (24). Rotation of the bell crank arm (34) alone will result in the flap (22) being translated rearwardly and rotated downwardly, i.e. Fowler flap movement. Extension or retraction of the actuator (38) will cause a rotation of the flap (22) about the axes (26) of the rollers (24).