摘要:
A system and process for aligning wheels of a three-wheel cycle include mounting targets to two wheels on an axle of the three-wheel cycle and positioning an alignment device relative to a single wheel of the three-wheel cycle to create a virtual axle and assess thrust angle. Once targets are in place, thrust angle is reduced to zero, and camber, caster, and toe measurements are taken and adjusted as needed to achieve three-wheel alignment.
摘要:
The present invention relates to a measuring apparatus, and more particularly to an apparatus used during testing of the steering characteristics of a wheeled motor vehicle and can be used for measuring and adjusting the chassis geometry parameters including toe-in/toe-out, camber, caster, steering angles and plays, and the like. The apparatus designed to be mounted within the interwheel space on the wheel disk and comprising a removable support designed to be mounted on the inner side of the wheel disk.
摘要:
The invention relates to a method and system for determining vehicle wheel alignment, and namely, camber angles, total and individual toe and front wheel steering axis caster and tilt angles (caster and kingpin inclination), by measuring changes in wheel sensor angles from a predetermined position. Changes are measured using gyroscopic sensors or MEMS angular rate sensors (MEMS gyroscopes).
摘要:
An improved method and system are provided for performing rolling runout compensation for vehicle wheel alignment. A plurality of sets of camber and toe measurements are acquired for a pair of vehicle wheels, each at a different, relatively small rollback angle between measurements; e.g., rolling the vehicle more than 0° and less than 180° from the last wheel position. Best fit sine waves are computed for each of the camber and toe measurements using the acquired data, and the best fit parameters are applied to compute runout at the current wheel angle. The computed runouts are subtracted from the measured camber and toe values to get true camber and toe values of the pair of wheels.
摘要:
A hybrid wheel alignment system and methodology use passive targets for a first pair of wheels (e.g. front wheels) and active sensing heads for another pair of wheels (e.g. rear wheels). The active sensing heads combine image sensors for capturing images of the targets with at least one spatial relationship sensor for sensing a relationship between the active sensing heads. One or both of the active sensing heads may include inclinometers or the like, for sensing one or more tilt angles of the respective sensing head. Data from the active sensing heads may be sent to a host computer for processing to derive one or more vehicle measurements, for example, for measurement of parameters useful in wheel alignment applications.
摘要:
A vehicle wheel alignment sensor for a machine-vision vehicle wheel alignment system comprising a scanned beam camera incorporating an illumination source, a means for deflecting light emitted by the illumination source along a path within a field of view, and a detector array for receiving illumination reflected from objects within the field of view to generate an image which is representative of a region of interest within the field of view.
摘要:
The invention relates to a method for optically measuring a chassis at a testing station. According to said method, radiation that is reflected by several optically distinguishable characteristic structures on a vehicle, comprising at least one wheel and a surrounding bodywork section, is detected by a measuring device with the aid of an image capture unit and at least the wheel plane and the wheel centre point are determined by an evaluation of the positional data obtained by means of the detected radiation. To obtain reliable measurement results relatively simply, several planes are projected at least onto the wheel (5) and the surrounding bodywork using structured light that is emitted by at least one radiation source of the measuring device, and the intersection of the planes with the wheel (5) and the surrounding bodywork or with a sub-section of the wheel and bodywork is captured as profile lines (3D point cloud) by means of at least one image capture unit, on the basis of a known geometrical assignment of the radiation source or sources to the image capture unit or units. From the intersection points of the profile lines with e.g. the edge of the rim or other rotationally symmetrical contours on the wheel and the wheel opening, the spatial position of characteristic surface points is determined, said points being used to directly determine the relevant chassis data.
摘要:
The present invention relates to a device for determining the wheel geometry and/or the axle geometry of motor vehicles in an inspection room, using an optical measuring apparatus having at least one image-taking device which records a marking device including at least one body feature and one reference feature system, and having an evaluating device, the position of the reference features in the inspection room being known in the evaluating device, and the recording of the marking device taking place during travel of the motor vehicle. The image-taking device is connected to a wheel to be measured, at its wheel rim in pivot joint fashion, and follows the rotating motion of the wheel, the optical axis of the image-taking device always being aligned essentially perpendicular to the roadway plane and the axis of rotation of the pivot joint being aligned in all wheel positions essentially parallel to the roadway plane. The reference feature system is situated in the roadway plane in the field of view of the image-taking device, and the at least one body feature is always situated in the field of view of the image-taking device and follows the movement of the motor vehicle. The position of the axis of rotation and/or the plane of rotation of the wheel is able to be determined in the light of the position of a wheel feature that is to be ascertained.
摘要:
A hybrid wheel alignment system and methodology use passive targets for a first pair of wheels (e.g. front wheels) and active sensing heads for another pair of wheels (e.g. rear wheels). The active sensing heads combine image sensors for capturing images of the targets with at least one spatial relationship sensor for sensing a relationship between the active sensing heads. One or both of the active sensing heads may include inclinometers or the like, for sensing one or more tilt angles of the respective sensing head. Data from the active sensing heads may be sent to a host computer for processing to derive one or more vehicle measurements, for example, for measurement of parameters useful in wheel alignment applications.
摘要:
An apparatus and method is provided for measuring the caster angle of a steerable wheel assembly without contact with the vehicle. An image capture device, preferably a CCD type video camera or sensor, views a vehicle wheel mounting and steering assembly that is illuminated by a light source. Information from the captured image is transmitted to a computer based control, such as a computer or processor, that determines the angle of a preformed line or preselected physical features on the wheel assembly in the captured image, and determines the caster angle of the steering axis based on the fixed angular relationship of the line or physical features to the steering axis that is stored or accessed by the control. Preferably, the image capture device is mounted below the vehicle on a vehicle alignment machine that supports the vehicle.