Abstract:
A three dimensional photonic crystal and layer-by-layer processes of fabricating the photonic crystal. A substrate is exposed to a plurality of first microspheres made of a first material, the first material being of a type that will bond to the templated substrate and form a self-passivated layer of first microspheres to produce a first layer. The first layer is exposed to a plurality of second microspheres made of a second material, the second material being of a type that will bond to the first layer and form a self-passivated layer of second microspheres. This layering of alternating first and second microspheres can be repeated as desired to build a three dimensional photonic crystal of desired geometry. Charged polymers such as polyelectrolyte coatings can be used to create the bonds.
Abstract:
The present invention relates to a method of deposition of a silicon layer on a single-crystal silicon substrate, so that the silicon layer is a single-crystal layer, but of different orientation than the substrate, including the steps of defining a window on the substrate; creating inside the window interstitial defects with an atomic proportion lower than one for one hundred; and performing a silicon deposition in conditions generally corresponding to those of an epitaxial deposition, but at a temperature lower than 850null C.
Abstract:
The present invention relates to a method of deposition of a silicon layer on a single-crystal silicon substrate 11 , so that the silicon layer is a single-crystal layer, but of different orientation than the substrate, including the steps of defining a window 13 on the substrate; creating inside the window interstitial defects 14 with an atomic proportion lower than one for one hundred; and performing a silicon deposition 15 in conditions generally corresponding to those of an epitaxial deposition, but at a temperature lower than 750.degree. C.
Abstract:
A method of treating a semiconductor substrate, which comprises the steps of subjecting a surface of the semiconductor substrate to an annealing treatment, performing an etching treatment of the surface of the semiconductor substrate under a condition where the semiconductor substrate is substantially prevented from being etched and a precipitate exposed from the surface of the semiconductor substrate is selectively etched away, and forming a monocrystalline film of a semiconductor material constituting the semiconductor substrate on the surface of the semiconductor substrate.
Abstract:
An epitaxially grown layer having a large area and an uniform thickness is formed on an insulating layer. The surface of a silicon substrate (2) is oxidized to form a silicon dioxide layer (4) acting as insulating layer. The silicon dioxide layer (4) is then provided with an opening (10) by etching with the aid of resist (6). After removing the resist (6), a silicon seed crystal layer (11) is selectively grown in the opening (10). Next, the silicon dioxide layer (4) is subjected to etchback using hydrofluoric acid, so that the side face (14) of the seed crystal layer (11) is emerged. The following epitaxial growth on the basis of the seed crystal layer (11) is allowed sufficient growth in the lateral direction. As a result, an epitaxially grown layer having (16) a large area and an uniform thickness is realized.
Abstract:
This is a method for fabricating a structure useful in semiconductor circuitry. The method comprises: growing a germanium layer 28 directly or indirectly on a semiconductor substrate 20; and depositing a high-dielectric constant oxide 32 (e.g. a ferroelectric oxide) on the germanium layer. Preferably, the germanium layer is epitaxially grown on the semiconductor substrate. This is also a semiconductor structure, comprising: a semiconductor substrate; a germanium layer on the semiconductor substrate; and a high-dielectric constant oxide on the germanium layer. Preferably the germanium layer is single-crystal. Preferably the substrate is silicon and the germanium layer is less than about 1 nm thick or the substrate is gallium arsenide (in which case the thickness of the germanium layer is not as important). A second germanium layer 40 may be grown on top of the high-dielectric constant oxide and a conducting layer 42 (possibly epitaxial) grown on the second germanium layer. Preferably the high-dielectric constant oxide is a titanate, such as barium strontium titanate. When the high-dielectric constant oxide is a lead-containing titanate 34, a buffer layer of non-lead-containing titanate 32 is preferably utilized between the germanium layer and the lead-containing titanate.
Abstract:
A crystal article comprises a substrate and single crystals provided on said substrate, with the shape of the contacted surface of said single crystals with said substrate being n-gonal (provided that n.gtoreq.5) or circular.
Abstract:
This is a method for fabricating a structure useful in semiconductor circuitry. The method comprises: growing a germanium layer 28 directly or indirectly on a semiconductor substrate 20; and depositing a high-dielectric constant oxide 32 (e.g. a ferroelectric oxide) on the germanium layer. Preferably, the germanium layer is epitaxially grown on the semiconductor substrate. This is also a semiconductor structure, comprising: a semiconductor substrate; a germanium layer on the semiconductor substrate; and a high-dielectric constant oxide on the germanium layer. Preferably the germanium layer is single-crystal. Preferably the substrate is silicon and the germanium layer is less than about 1 nm thick or the substrate is gallium arsenide (in which case the thickness of the germanium layer is not as important). A second germanium layer 40 may be grown on top of the high-dielectric constant oxide and a conducting layer 42 (possibly epitaxial) grown on the second germanium layer. Preferably the high-dielectric constant oxide is a titanate, such as barium strontium titanate. When the high-dielectric constant oxide is a lead-containing titanate 34, a buffer layer of non-lead-containing titanate 32 is preferably utilized between the germanium layer and the lead-containing titanate.
Abstract:
A crystal article comprises a substrate having an insulating amorphous surface and monocrystal formed on the substrate. The monocrystal is formed by providing a primary seed in the form of a film with an area 100 .mu.m.sup.2 or less arranged in a desired pattern on the surface of the substrate acting as a non-nucleation surface with a small nucleation density, then subjecting the primary seed to thermal treatment to convert it to a monocrystalline seed, and subsequently subjecting the monocrystalline seed to crystal growth treatment to allow a monocrystal to grow beyond the monocrystalline seed and cover the non-nucleation surface.
Abstract:
A method for controlling roughness on a surface of a monocrystal comprises supplying atomes for deposition on the surface of the monocrystal having the roughness under irradiation with ions having controlled energy to carry out epitaxial growth, thereby reducing the roughness.