Abstract:
In electronic component mounting for a plurality of individual substrates held on a carrier, solder position deviation data is calculated for each individual substrate based on a mark position recognition result on a carrier after solder printing, a solder position recognition result, and electrode position information indicating the position of an electrode on each individual substrate, an operation of calculating position correction data, which is used to correct the positional deviation to mount electronic components at proper positions, is performed for each individual substrate based on the calculated solder position deviation data and the calculated position correction data is feed-forwarded to an electronic component mounting apparatus, and an electronic component mounting operation of a component mounting mechanism is controlled based on the mark position recognition result and the position correction data.
Abstract:
To provide an electronic component mounting system, an electronic component placing device, and an electronic component mounting method, which can prevent waste due to the place of an electronic component onto a unit substrate having a print failure.In the electronic component mounting method for mounting an electronic component on a multi-substrate in which a plurality of unit substrates are formed on the same substrate, the quality of a print state of a solder printed on electrodes formed on the plurality of unit substrates is determined by the test of the print state of the solder and a determination result is output to an electronic component placing device as solder test data in every unit substrate. In a component placing steps, a component placing mechanism is controlled based on the solder test data such that a component placing operation is performed only on the unit substrate in which the print state of the solder is determined to be good. Accordingly, it is possible to prevent waste due to the place of an electronic component onto a unit substrate having a print failure.
Abstract:
A method of mounting a component on an electrode on a board. Mounting coordinates for mounting the component are calculated. A determination is made of printing positions where solder for the component is situation on the electrode. The printing positions of the solder are stored. Mounting position data for where the component is to be mounted on the solder is prepared based on the previous steps. The component is mounted using the information gathered in the previous steps.
Abstract:
A piston type compressor having a drive plate (swash plate), wherein sliding friction between the drive plate and shoes is reduced and the compressor is made smaller by slidably attaching the shoes engaged with spherical ends of pistons to a shoe holding plate formed with guide grooves in the radial direction and supporting the shoe holding plate by the drive plate through a thrust bearing. The drive plate is connected to an arm of the shaft side through a double slide link mechanism to enable it to be supported by only a front end of the front housing.
Abstract:
A component mounting method for mounting several micro component chips aligned in parallel onto a board by soldering. An allowable offset is set for each electrode, taking into account a self-alignment effect of melted solder in soldering for bonding component terminals onto electrodes formed on the board corresponding to a component layout. Solder printing and component placement onto the electrodes are shifted by the offset. This offset is balanced by the self-alignment effect of melted solder, and each component is secured at an appropriate position. This mounting method allows less stringent spacing conditions to be applied for mounting and prevents the occurrence of defects during printing and placement.
Abstract:
A process for producing amino resin particles includes: a reaction process for obtaining a reaction solution containing an amino resin precursor which is obtained by a reaction of an amino compound with formaldehyde, and having a viscosity in a range of from 2×10−2 Pa·s to 5.8×10−2 Pa·s at a temperature in a range of from 95° C. to 98° C.; an emulsion process for obtaining an emulsion by emulsifying the reaction solution; and a curing process for curing the amino resin precursor in the emulsion state by adding a catalyst to the emulsion. With this producing process, it is possible to readily produce amino resin particles with an essentially uniform particle size (narrow particle size distribution). Further, with use of an aqueous dispersion of an inorganic pigment which is obtained by wet pulverizing the inorganic pigment in an aqueous medium until the average particle size of the inorganic pigment measured by a light scattering method becomes not more than 300 nm, it is possible to obtain amino resin particles with superior properties in coloring strength, visibility, heat resistance, solvent resistance, and chemicals resistance.
Abstract:
A washing apparatus for performing a batch treatment of a plurality of wafers has a vessel and a wafer boat dedicated to the vessel and movable in the vertical direction. The boat has a fork, which supports the wafers in the vessel in a manner such that the wafers are spaced from one another at predetermined intervals. The wafers are received in a carrier, and are transferred to the boat by a rotary transfer arm. This arm has a fork for supporting the wafers during transfer thereof in a manner such that the wafers are spaced from one another at the predetermined intervals. Transfer of the rotary transfer arm is performed above the washing vessel by moving the boat up and down. At this time, the forks of the boat and arm engage with each other.