Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
A hierarchy machine may be configured as a clustering machine that utilizes local feature embedding to organize visual patterns into nodes that each represent one or more visual patterns. These nodes may be arranged as a hierarchy in which a node may have a parent-child relationship with one or more other nodes. The hierarchy machine may implement a node splitting and tree-learning algorithm that includes hard-splitting of nodes and soft-assignment of nodes to perform error-bounded splitting of nodes into clusters. This may enable the hierarchy machine, which may form all or part of a visual pattern recognition system, to perform large-scale visual pattern recognition, such as font recognition or facial recognition, based on a learned error-bounded tree of visual patterns.
Abstract:
Techniques and apparatus for automatic upright adjustment of digital images. An automatic upright adjustment technique is described that may provide an automated approach for straightening up slanted features in an input image to improve its perceptual quality. This correction may be referred to as upright adjustment. A set of criteria based on human perception may be used in the upright adjustment. A reprojection technique that implements an optimization framework is described that yields an optimal homography for adjustment based on the criteria and adjusts the image according to new camera parameters generated by the optimization. An optimization-based camera calibration technique is described that simultaneously estimates vanishing lines and points as well as camera parameters for an image; the calibration technique may, for example, be used to generate estimates of camera parameters and vanishing points and lines that are input to the reprojection technique.