Abstract:
In one embodiment, a device in a network analyzes data regarding a detected anomaly in the network. The device determines whether the detected anomaly is a false positive. The device generates a white label for the detected anomaly based on a determination that the detected anomaly is a false positive. The device causes one or more alerts regarding the detected anomaly to be suppressed using the generated white label for the anomaly.
Abstract:
In one embodiment, a first network device receives a notification that the first network device has been selected to validate a machine learning model for a second network device. The first network device receives model parameters for the machine learning model that were generated by the second network device using training data on the second network device. The model parameters are used with local data on the first network device to determine performance metrics for the model parameters. The performance metrics are then provided to the second network device.
Abstract:
In one embodiment, attack traffic corresponding to a detected DoS attack from one or more attacker nodes is received at a denial of service (DoS) attack management node in a network. The DoS attack management node determines attack information relating to the attack traffic, including a type of the DoS attack and an intended target of the DoS attack. Then, the DoS attack management node triggers an attack mimicking action based on the attack information, where the attack mimicking action mimics a behavior of the intended target of the DoS attack that would be expected by the one or more attacker nodes if the DoS attack were successful.
Abstract:
In one embodiment, a device in a network detects a network attack using aggregated metrics for a set of traffic data. In response to detecting the network attack, the device causes the traffic data to be clustered into a set of traffic data clusters. The device causes one or more attack detectors to analyze the traffic data clusters. The device causes the traffic data clusters to be segregated into a set of one or more attack-related clusters and into a set of one or more clusters related to normal traffic based on an analysis of the clusters by the one or more attack detectors.
Abstract:
In one embodiment, statistical information is collected relating to one or both of communication link quality or channel quality in a frequency-hopping network, in which packets are sent according to a frequency-hopping schedule that defines one or more timeslots, each timeslot corresponding to a transmission frequency. Also, a performance metric of a particular transmission frequency corresponding to a scheduled timeslot is predicted based on the collected statistical information. Based on the predicted performance metric, it is determined whether a transmitting node in the frequency-hopping network should transmit a packet during the scheduled timeslot using the particular transmission channel or wait until a subsequent timeslot to transmit the packet using another transmission frequency.
Abstract:
In one embodiment, a control loop control using a broadcast channel may be used to communicate with a node under attack. A management device may receive data indicating that one or more nodes in a computer network are under attack. The management device may then determine that one or more intermediate nodes are in proximity to the one or more nodes under attack, and communicate an attack-mitigation packet to the one or more nodes under attack by using the one or more intermediate nodes to relay the attack-mitigation packet to the one or more nodes under attack.
Abstract:
In one embodiment, a traffic model manager node receives data flows in a network and determines a degree to which the received data flows conform to one or more traffic models classifying particular types of data flows as non-malicious. If the degree to which the received data flows conform to the one or more traffic models is sufficient, the traffic model manager node characterizes the received data flows as non-malicious. Otherwise, the traffic model manager node provides the received data flows to a denial of service (DoS) attack detector in the network to allow the received data flows to be scanned for potential attacks.
Abstract:
In one embodiment, a device in a network receives a set of output label dependencies for a set of attack detectors. The device identifies applied labels that were applied by the attack detectors to input data regarding a network, the applied labels being associated with probabilities. The device determines a combined probability for two or more of the applied labels based on the output label dependencies and the probabilities associated with the two or more labels. The device selects one of the applied labels as a finalized label for the input data based on the probabilities associated with the applied labels and on the combined probability for the two or more labels.
Abstract:
In one embodiment, a training request is sent to a plurality of nodes in a network to cause the nodes to generate statistics regarding unicast and broadcast message reception rates associated with the nodes. The statistics are received from the nodes and a statistical model is generated using the received statistics and is configured to detect a network attack by comparing unicast and broadcast message reception statistics. The statistical model is then provided to the nodes and an indication that a network attack was detected by a particular node is received from the particular node.
Abstract:
In one embodiment, local model parameters are generated by training a machine learning model at a device in a computer network using a local data set. One or more other devices in the network are identified that have trained machine learning models using remote data sets that are similar to the local data set. The local model parameters are provided to the one or more other devices to cause the one or more other devices to generate performance metrics using the provided model parameters. Performance metrics for model parameters are received from the one or more other devices and a global set of model parameters is selected for the device and the one or more other devices using the received performance metrics.