Abstract:
An MRI device for providing high-contrast, high-resolution images of a fluid. The device includes: an envelope for at least partially confining the fluid; a plurality of magnets located at least partially around the envelope; and a CPU to process the images, including a computer readable medium containing instructions for generating at least one third image superimposing at least one image of the first images with at least one image of the second images, whereby a high-contrast, high-resolution real-time continuous images of the fluid is obtained.
Abstract:
An MRI device for providing high-contrast, high-resolution images of a fluid. The device includes: an envelope for at least partially confining the fluid; a plurality of magnets located at least partially around the envelope; and a CPU to process the images, including a computer readable medium containing instructions for generating at least one third image superimposing at least one image of the first images with at least one image of the second images, whereby a high-contrast, high-resolution real-time continuous images of the fluid is obtained.
Abstract:
An MRI device for providing high-contrast, high-resolution images of a fluid. The device includes: an envelope for at least partially confining the fluid; a plurality of magnets located at least partially around the envelope; and a CPU to process the images, including a computer readable medium containing instructions for generating at least one third image superimposing at least one image of the first images with at least one image of the second images, whereby a high-contrast, high-resolution real-time continuous images of the fluid is obtained.
Abstract:
The present invention discloses to a magnetic resonance device consisting of magnets housed within a cage, a thermal regulating system (TRS) adapted to thermoregulate the magnets to room temperature T±ΔT. TRS comprising a (i) preset array of one or more opened-bore channels provided within the cage and/or within the magnets; and, (ii) means for forcing fluid throughout the array of opened-bore channels, such that temperature T of the magnets is regulated to a preset range of ΔT.
Abstract:
Generally, a system for generating a magnetic field having a desired magnetic field strength and/or a desired magnetic field direction is provided. The system can include a plurality of magnetic segments and/or a plurality of ferromagnetic segments. Each magnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. Each ferromagnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. In various embodiments, a size, shape, positioning and/or number of magnetic segments and/or ferromagnetic segments in the system, as well as a magnetization direction of the magnetic segments can be predetermined based on, for example, predetermined parameters of the system (e.g., a desired magnetic field strength, direction and/or uniformity of the magnetic field, a desired elimination of a magnetic fringe field and/or total weight of the system) and/or based on a desired application of the system (e.g., performing a magnetic resonance imaging of at least a portion of a patient and/or performing a magnetic resonance spectroscopy of a sample).
Abstract:
A cage with a fastening system (1) in a magnetic resonance device (MRD) is disclosed, said cage in an MRD comprising (a) M pole pieces (45) (M≥2); (b) N side magnets (20) (N≥2), said side magnets substantially enclosing said pole pieces and thereby defining a magnetic envelope and enclosed volume therein; (c) N side walls (10), said side walls substantially enclosing said side magnets; (d) P face walls (30) (P≥2); and (e) a plurality of fastening rods (100); wherein each of said fastening rods physically interconnects at least one pair of side walls, passing through at least one of said side magnets and at least one of said pole pieces.
Abstract:
A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap.
Abstract:
Radiofrequency (RF) coil unit and a housing for the RF coil unit is provided. The RF coil unit can include a substantially annular body having a concave indent along a longitudinal direction along the substantially annular body such that when a head of the patient is inserted into an interior of the substantially annular body, at least a portion of the head of the patient is viewable and accessible from a location exterior to the substantially annular body. The housing for the RF coil unit can include a channel to receive the RF coil unit of a MRI device. The housing can enclose regions with high voltages (e.g., 1000 Volts) and/or separate these regions from patient body parts by, for example, including insulating material, thereby enhancing a safety of the patient.
Abstract:
A protective sleeve reduces electromagnetic energy propagation from the magnet bore of a magnetic resonance imaging device (MRD) to the surrounding environment and prevents electromagnetic energy in the surrounding environment from contaminating an MRI reading. The protective sleeve comprises a distal portion configured for insertion within the bore and a proximal portion attachable to the MRD aperture. The sleeve is configured for inserting a body part for insertion within the MRD's open magnet, with the imaged portion of the body part protruding from the distal end of sleeve into the MRD's volume of interest. The sleeve comprises, or is connected to, one or more sensors configured to detect movement, acceleration or dislocation of at least one portion or segment of the body part to be scanned.
Abstract:
A magnetic resonance imaging (MRI) system is provided. The MRI system can include a magnetic field device to generate a magnetic field within a measurement volume and to generate a magnetic fringe field external to the measurement volume. The MRI system can include a ferromagnetic housing to envelop the magnetic field device. The housing can have a first portion and a second portion, where thickness of the first portion is different from thickness of the second portion. The MRI system can include a plate having a plate opening and positioned external to the housing at a predetermined distance from the housing. In some embodiments, the magnetic fringe field generated by the MRI system can be asymmetric with respect to a center of the measurement volume.