摘要:
This invention relates to novel enantiopure azabicyclo pyridazinyloxy derivatives, which are found to be cholinergic ligands at the nicotinic acetylcholine receptors and modulators of the monoamine receptors and transporters. Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel 1,4-diaza-bicyclo[3.2.2]nonyl oxadiazolyl derivatives and their use in the manufacture of pharmaceutical compositions. The compounds of the invention are found to be cholinergic ligands at the nicotinic acetylcholine receptors and modulators of the monoamine receptors and transporters.Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel 1,4-diaza-bicyclo[3.2.2]nonyl heteroaryl derivatives and their use in the manufacture of pharmaceutical compositions. The compounds of the invention are found to be cholinergic ligands at the nicotinic acetylcholine receptors.Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel quinuclidine derivatives and their use as pharmaceuticals. Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel diazabicyclic aryl derivatives which are found to be cholinergic ligands at the nicotinic acetylcholine receptors and modulators of the monoamine receptors and transporters. Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel purinyl derivatives and their use as potassium channel modulating agents. Moreover the invention is directed to pharmaceutical compositions useful for the treatment or alleviation of diseases or disorders associated with the activity of potassium channels.
摘要:
This invention relates to novel diazabicyclic aryl derivatives which are found to be cholinergic ligands at the nicotinic acetylcholine receptors. Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.
摘要:
This invention relates to novel purinyl derivatives and their use as potassium channel modulating agents. Moreover the invention is directed to pharmaceutical compositions useful for the treatment or alleviation of diseases or disorders associated with the activity of potassium channels.
摘要:
3,9-diazabicyclo[3.3.1]nonane derivatives, useful as monoamine neurotransmitter re-uptake inhibitors. Also, use of these compounds in a method for therapy and in pharmaceutical compositions comprising the compounds. The 3,9-diazabicyclo[3.3.1]nonane derivatives have the formula wherein Ra and Rb are as described in the application. Also disclosed are stereoisomers and pharmaceutically acceptable salts of the compounds.
摘要:
Compounds of the class 3,9-diaza-bicyclo [3.3.1]nonane derivatives. The compounds correspond to structural Formula (I): wherein Ra is hydrogen or optionally substituted alkyl and Rb is a monocyclic heteroaryl group. The compounds are useful in the treatment, prevention, or alleviation of diseases or disorders or conditions that are responsive to modulation of nicotinic acetylcholine receptors, including cognitive disorders, Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, Bipolar Disorder, obsessive compulsive disorders (OCD), narcolepsy, senile dementia, autism, Parkinson'disease, Amyotrophic Lateral Sclerosis, epilepsy, and diabetic neuropathy.