RANKING ADVERTISEMENTS
    81.
    发明申请
    RANKING ADVERTISEMENTS 有权
    排名广告

    公开(公告)号:US20110314013A1

    公开(公告)日:2011-12-22

    申请号:US12816533

    申请日:2010-06-16

    IPC分类号: G06F17/30

    CPC分类号: G06Q30/0241 G06Q30/0251

    摘要: While browsing, a user may interact with a wide variety of images. The user may upload and share images taken with a digital camera and/or search for image using a search engine. Because images are rich in contextual information, it may be advantageous to provide additional information, such as adjacent market advertising based upon matching advertisements with contextual information of the images. Accordingly, a query image may be used to retrieve a video frame set. The video frame set may be expanded with related video frames, which may comprise video frames correlating to adjacent markets. The expanded video frame set may be grouped into clusters of similar frames. The clusters may be used to rank advertisements based upon how similar the advertisements are to the clusters and/or video frames within the clusters. In this way, one or more ranked advertisements may be presented with the query image.

    摘要翻译: 在浏览时,用户可以与各种图像进行交互。 用户可以上传和共享用数码相机拍摄的图像和/或使用搜索引擎来搜索图像。 由于图像丰富的上下文信息,提供附加信息可能是有利的,例如基于匹配广告的相邻市场广告与图像的上下文信息。 因此,可以使用查询图像来检索视频帧集合。 视频帧集合可以用相关的视频帧进行扩展,视频帧可以包括与相邻市场相关联的视频帧。 扩展的视频帧集可以被分组成类似帧的簇。 群集可以用于基于广告与群集内的群集和/或视频帧的相似度来对广告进行排名。 以这种方式,可以向查询图像呈现一个或多个排名的广告。

    Forum web page clustering based on repetitive regions
    82.
    发明授权
    Forum web page clustering based on repetitive regions 有权
    基于重复区域的论坛网页聚类

    公开(公告)号:US08051083B2

    公开(公告)日:2011-11-01

    申请号:US12103712

    申请日:2008-04-16

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06Q10/10

    摘要: Described is a technology by which forum web pages are processed into clusters for classification purposes, including by determining repetitive regions between pages and associating pages that have similar repetitive regions into a common cluster. Patterns corresponding to the regions are determined, and a feature set based at least in part on those patterns (e.g., pattern frequency) is extracted from the page. The feature set of a page is compared against the feature set of another page to determine similarity therewith, e.g., via a feature space distance computation that is evaluated against a threshold distance.

    摘要翻译: 描述了一种技术,通过该技术将论坛网页处理成用于分类目的的群集,包括通过确定页面之间的重复区域并将具有相似重复区域的页面关联到公共群集中。 确定与区域对应的模式,并且至少部分地基于那些模式(例如,模式频率)从页面提取特征集。 将页面的特征集合与另一页面的特征集进行比较以确定其相似性,例如通过针对阈值距离评估的特征空间距离计算。

    Object similarity search in high-dimensional vector spaces
    83.
    发明授权
    Object similarity search in high-dimensional vector spaces 有权
    高维向量空间中的对象相似度搜索

    公开(公告)号:US07941442B2

    公开(公告)日:2011-05-10

    申请号:US11737075

    申请日:2007-04-18

    IPC分类号: G06F7/00 G06F17/30

    摘要: An object search system generates a hierarchical clustering of objects of a collection based on similarity of the objects. The object search system generates a separate hierarchical clustering of objects for multiple features of the objects. To identify objects similar to a target object, the object search system first generates a feature vector for the target object. For each feature of the feature vector, the object search system uses the hierarchical clustering of objects to identify the cluster of objects that is most “feature similar” to that feature of the target object. The object search system indicates the similarity of each candidate object based on the features for which the candidate object is similar.

    摘要翻译: 对象搜索系统基于对象的相似性生成集合的对象的分层聚类。 对象搜索系统为对象的多个特征生成对象的单独分层聚类。 为了识别与目标对象类似的对象,对象搜索系统首先生成目标对象的特征向量。 对于特征向量的每个特征,对象搜索系统使用对象的分层聚类来识别与目标对象的特征最“特征相似”的对象簇。 对象搜索系统基于候选对象相似的特征来指示每个候选对象的相似性。

    Thread-Based Incremental Web Forum Crawling
    84.
    发明申请
    Thread-Based Incremental Web Forum Crawling 审中-公开
    基于线程的增量Web论坛抓取

    公开(公告)号:US20100205168A1

    公开(公告)日:2010-08-12

    申请号:US12368768

    申请日:2009-02-10

    IPC分类号: G06F17/30

    CPC分类号: G06F16/951

    摘要: The incremental web forum crawling technique described herein is a web forum crawling technique that employs a thread-wise strategy that takes into account thread-level statistics, for example, the number of replies and the frequency of replies, to estimate the activity trend of each thread. To extract such statistical information, the technique employs a simple yet very robust approach to extract the timestamp of each post in a discussion thread. It also employs a regression model to predict the time of the next post for each thread.

    摘要翻译: 本文描述的增量网页论坛抓取技术是一种网络论坛抓取技术,其采用考虑到线程级统计的线程策略,例如回复次数和回复频率,以估计每个 线。 为了提取这种统计信息,该技术采用一种简单而非常鲁棒的方法来提取讨论线程中每个帖子的时间戳。 它还采用回归模型来预测每个线程的下一个帖子的时间。

    SEARCH ENGINE ENHANCEMENT USING MINED IMPLICIT LINKS
    85.
    发明申请
    SEARCH ENGINE ENHANCEMENT USING MINED IMPLICIT LINKS 有权
    使用精简的隐含链接搜索引擎增强

    公开(公告)号:US20100023508A1

    公开(公告)日:2010-01-28

    申请号:US12505426

    申请日:2009-07-17

    IPC分类号: G06F17/30 G06F17/00

    摘要: An implicit links enhancement system and method for search engines that generates implicit links obtained from mining user access logs to facilitate enhanced local searching of web sites and intranets. Embodiments of the implicit links search enhancement system and method includes extracting implicit links by mining users' access patterns and then using a modified link analysis algorithm to re-rank search results obtained from traditional search engines. More specifically, embodiments of the method include extracting implicit links from a user access log, generating an implicit links graph from the extracted implicit links, and computing page rankings using the implicit links graph. The implicit links are extracted from the log using a two-item sequential pattern mining technique. Search results obtained from a search engine are re-ranked based on an implicit links analysis performed using an updated implicit links graph, a modified re-ranking formula, and at least one re-ranking technique.

    摘要翻译: 一种用于搜索引擎的隐式链接增强系统和方法,用于生成从挖掘用户访问日志中获取的隐含链接,以促进对网站和内部网的增强的本地搜索。 隐式链接搜索增强系统和方法的实施例包括通过挖掘用户的访问模式来提取隐含链接,然后使用经修改的链接分析算法重新排列从传统搜索引擎获得的搜索结果。 更具体地,该方法的实施例包括从用户访问日志提取隐含链接,从提取的隐式链接生成隐式链接图,以及使用隐式链接图计算页面排名。 使用两项顺序模式挖掘技术从日志中提取隐式链接。 基于使用更新的隐式链接图,修改的重新排列公式和至少一个重新排序技术执行的隐式链接分析,从搜索引擎获得的搜索结果被重新排序。

    User interface for viewing clusters of images
    86.
    发明授权
    User interface for viewing clusters of images 有权
    用于查看图像群集的用户界面

    公开(公告)号:US07644373B2

    公开(公告)日:2010-01-05

    申请号:US11337945

    申请日:2006-01-23

    IPC分类号: G06F3/048 G06F7/00

    摘要: A method and system for providing a user interface for presenting images of clusters of an image search result is provided. The user interface system displays the search result in a cluster/view form using a cluster panel and a view panel. The cluster panel contains a cluster area for each cluster. The view panel may contain thumbnails of images of the search result in a list view or a mix view. When a user selects a cluster area from the cluster panel, the user interface system displays a list view of thumbnails for that cluster in the view panel. The user interface system may display a thumbnail list near a cluster area of the cluster panel. The thumbnail list contains mini-thumbnails of the images of the selected cluster. The user interface system may also display a detail view of an image in the view panel when a user selects an image.

    摘要翻译: 提供了一种用于提供用于呈现图像搜索结果的聚类的图像的用户界面的方法和系统。 用户界面系统使用群集面板和视图面板将搜索结果显示在群集/视图窗体中。 集群面板包含每个集群的集群区域。 视图面板可以在列表视图或混合视图中包含搜索结果的图像的缩略图。 当用户从群集面板中选择群集区域时,用户界面系统会在视图面板中显示该群集的缩略图列表视图。 用户界面系统可以在集群面板的集群区域附近显示缩略图列表。 缩略图列表包含所选集群的图像的迷你缩略图。 当用户选择图像时,用户界面系统还可以在视图面板中显示图像的细节视图。

    RECOMMENDING CONTACTS IN A SOCIAL NETWORK
    87.
    发明申请
    RECOMMENDING CONTACTS IN A SOCIAL NETWORK 有权
    在社交网络中推荐的联系人

    公开(公告)号:US20090319466A1

    公开(公告)日:2009-12-24

    申请号:US12546630

    申请日:2009-08-24

    IPC分类号: G06N5/02

    摘要: A method and system for recommending potential contacts to a target user is provided. A recommendation system identifies users who are related to the target user through no more than a maximum degree of separation. The recommendation system identifies the users by starting with the contacts of the target user and identifying users who are contacts of the target user's contacts, contacts of those contacts, and so on. The recommendation system then ranks the identified users, who are potential contacts for the target user, based on a likelihood that the target user will want to have a direct relationship with the identified users. The recommendation system then presents to the target user a ranking of the users who have not been filtered out.

    摘要翻译: 提供了一种用于向目标用户推荐潜在联系人的方法和系统。 推荐系统通过不超过最大程度的分离来识别与目标用户相关的用户。 推荐系统通过从目标用户的联系人开始并识别与目标用户的联系人,联系人的联系人等的用户来识别用户。 然后,推荐系统根据目标用户想要与所识别的用户有直接关系的可能性,对所识别的用户排列谁是目标用户的潜在联系人。 然后,推荐系统向目标用户呈现未被滤除的用户的排名。

    Method and system for clustering using generalized sentence patterns
    88.
    发明授权
    Method and system for clustering using generalized sentence patterns 有权
    使用广义句型进行聚类的方法和系统

    公开(公告)号:US07584100B2

    公开(公告)日:2009-09-01

    申请号:US10880662

    申请日:2004-06-30

    摘要: A method and system for clustering documents based on generalized sentence patterns of the topics of the documents is provided. A generalized sentence patterns (“GSP”) system identifies a “sentence” that describes the topic of a document. To cluster documents, the GSP system generates a “generalized sentence” form of the sentence that describes the topic of each document. The generalized sentence is an abstraction of the words of the sentence. The GSP system identifies clusters of documents based on the patterns of their generalized sentences. The GSP system clusters documents when the generalized sentence representations of their topics have a similar pattern.

    摘要翻译: 提供了一种基于文档主题的广义句子模式对文档进行聚类的方法和系统。 广义句型(“GSP”)系统识别描述文档主题的“句子”。 为了集群文件,GSP系统生成描述每个文档主题的句子的“广义句子”形式。 广义句是对句子的单词的抽象。 GSP系统根据其广义句子的模式识别文档簇。 GSP系统在其主题的广义句子表示具有相似模式时对文档进行聚类。

    Evaluating and generating summaries using normalized probabilities
    89.
    发明授权
    Evaluating and generating summaries using normalized probabilities 有权
    使用归一化概率评估和生成摘要

    公开(公告)号:US07565372B2

    公开(公告)日:2009-07-21

    申请号:US11225861

    申请日:2005-09-13

    IPC分类号: G06F17/00

    摘要: A summary system for evaluating summaries of documents and for generating summaries of documents based on normalized probabilities of portions of the document. A summarization system generates a summary by selecting sentences for the summary based on their normalized probabilities as derived from a document model. An evaluation system evaluates the effectiveness of a summary based on a normalized probability for the summary that is derived from a document model.

    摘要翻译: 基于文件部分的归一化概率来评估文件摘要和文档摘要的汇总系统。 摘要系统通过从文档模型导出的归一化概率选择摘要的句子来生成摘要。 评估系统基于从文档模型导出的摘要的归一化概率来评估摘要的有效性。

    METHOD AND SYSTEM FOR CLASSIFYING DISPLAY PAGES USING SUMMARIES
    90.
    发明申请
    METHOD AND SYSTEM FOR CLASSIFYING DISPLAY PAGES USING SUMMARIES 审中-公开
    使用概要分类显示页的方法和系统

    公开(公告)号:US20090119284A1

    公开(公告)日:2009-05-07

    申请号:US12145222

    申请日:2008-06-24

    IPC分类号: G06F7/06 G06F17/30

    CPC分类号: G06F16/345 G06F16/951

    摘要: A method and system for classifying display pages based on automatically generated summaries of display pages. A web page classification system uses a web page summarization system to generate summaries of web pages. The summary of a web page may include the sentences of the web page that are most closely related to the primary topic of the web page. The summarization system may combine the benefits of multiple summarization techniques to identify the sentences of a web page that represent the primary topic of the web page. Once the summary is generated, the classification system may apply conventional classification techniques to the summary to classify the web page. The classification system may use conventional classification techniques such as a Naïve Bayesian classifier or a support vector machine to identify the classifications of a web page based on the summary generated by the summarization system.

    摘要翻译: 一种基于自动生成的显示页面摘要来分类显示页面的方法和系统。 网页分类系统使用网页摘要系统来生成网页摘要。 网页的摘要可以包括与网页的主要主题最密切相关的网页的句子。 总结系统可以结合多个汇总技术的优点来识别代表网页的主要主题的网页的句子。 一旦生成摘要,分类系统可以将常规分类技术应用于摘要以对网页进行分类。 分类系统可以使用诸如朴素贝叶斯分类器或支持向量机的常规分类技术来基于由汇总系统生成的摘要来识别网页的分类。