摘要:
A location system for locating and determining the motion and velocity of a wireless device. The methods include direct inferences about whether a device is in motion versus static based on a statistical analysis of the variation of radio signal strengths over time. The system is trained according to a sparse set of identified locations from which signal strengths are measured. The system uses the signal properties of the identified locations to interpolate for a new location of the wireless device. The system uses a probabilistic graph where the identified locations of the floor plan, expected walking speeds of pedestrians, and independent inference of whether or not the device is in motion are used to determine the new location of the device.
摘要:
The present invention is embodied in a system and method for maintaining a background model of an image sequence by processing on multiple spatial scales. These multiple spatial scales include a pixel scale, a regional scale and a frame scale. The image sequence undergoes pixel processing that determines a current background model and provides an initial pixel assignment as either a background or a foreground pixel. Region processing further refines the initial pixel assignments by considering relationships between pixels and possibly reassigning pixels. Frame processing further refines the current background model by determining whether a substantial change has occurred in the actual background and, if so, providing a more accurate background model.
摘要:
Method and system for measuring a relative position and orientation of range cameras using a movement of an object within a scene. In general, the method and system determine the relative pose between two cameras by measuring a path the movement of the object makes within a scene and calculating transformation parameters based on these measurements. These transformation parameters are used to determine the relative position of each camera with respect to a base camera. The system and method include other novel features, such as a data synchronization feature that uses a time offset between cameras to obtain the transformation parameters, and a technique that improves the robustness and accuracy of solving for the transformation parameters, and an interpolation process that interpolates between sampled points if there is no data at a particular instant in time.
摘要:
An architecture for minimizing calibration effort in an IEEE 802.11 device location measurement system. The calibration technique is based upon a regression function that produces adequately accurate location information as a function of signal strength regardless of gaps in the calibration data or minimally available data. The algorithm takes a set of signal strengths from known room locations in a building and generates a function giving (x,y) as a function of signal strength, which function may then be used for the estimation of new locations. Radial basis functions, which are simple to express and compute, are used for regression. The fact that the algorithm maps signal strength to continuous location makes it possible to skip rooms during calibration, yet still evaluate the location in those rooms.
摘要:
A method and a system for measuring a relative position and orientation of range cameras using a movement of an object within a scene. In general, the present invention determines the relative pose between two cameras by measuring a path the movement of the object makes within a scene and calculating transformation parameters based on these measurements. These transformation parameters are used to determine the relative position of each camera with respect to a base camera. In a preferred embodiment, the present invention also includes other novel features such as a data synchronization feature that uses a time offset between cameras to obtain the transformation parameters. In addition, the present invention includes a technique that improves the robustness and accuracy of solving for the transformation parameters and an interpolation process that interpolates between sampled points if there is no data at a particular instant in time. Further, the present invention includes a system for determining a relative position and orientation of range cameras using spatial movement that incorporates the method of the present invention.
摘要:
The present invention is embodied in a system and process for identifying and locating people and objects of interest in a scene by selectively clustering distinct three-dimensional regions or “blobs” within the scene and comparing the blob clusters to a model. Specifically, a background subtraction process is used to generate a working image from a baseline depth image and a live depth image of the scene. Distinct blobs in the working image are selectively clustered to generate “candidate blob clusters” which are then compared to a model representing the people or objects of interest. The comparison of candidate blob clusters to the model identifies the blob clusters that most accurately represent the people or objects of interest in the scene by determining the closest match or matches to the model. Blob clusters may be compared to a plurality of models representing people or objects of different sizes and shapes. Sequential live depth images may be captured and analyzed in real-time using the system and process of the present invention to provide for continuous identification and location of people or objects as a function of time.
摘要:
A system and process for automatically initiating and terminating associations between a computer input device of some type (e.g., computer mice, keyboards, trackballs, and the like) and a computer in a computing space that can have many such devices and several computers. In this way, input devices can be used to interface with any of the computers in the space. For instance, a user could move about a room filled with computers and their respective computer monitors, with a wireless mouse, and interface with the various computers using the mouse. To this end, the aforementioned association entails redirecting signals generated by a computer input device from one computing device in a computing space to another computing device in the space. The association is either initiated or terminated depending on whether sets of preconditions have been satisfied. These preconditions can be tied to any event or combination of events desired, and a set of preconditions can include any number of preconditions, even just one. In general, the preconditions will fall in two categories—namely proximity-related preconditions and nonproximity-related preconditions. Proximity-related initiating preconditions as the name implies involve a requirement that the input devices are relatively near a computer or a display device connected to the computer for an association to be initiated. Conversely, if the input device and computer are too far apart, proximity-related terminating preconditions would dictate that any association be terminated. Nonproximity-related preconditions can concern such things as ambient conditions (e.g., illumination), device states, pre-existing associations, and device incompatibility.