Abstract:
The purpose is to make it possible to autonomously suppress a reduction in an electron beam without providing a means for supervising the electron beam intensity of a monitor or the like. An electron gun, provided with: a heater (12) in which one terminal serves as a heater terminal (H) and the other terminal serves as a shared terminal (HK), and in which a low-voltage power supply (21) is connected between the terminals, the heater (12) generating heat due to a current being supplied from the low-voltage power supply (21); and a cathode electrode (11) connected to the shared terminal (HK) and heated by the heater (12) to discharge thermal electrons. A cathode current (Ik) due to the thermal electrons discharged from the cathode electrode (11), and a current (Ih) due to the low-voltage power supply, flow in opposite directions through the heater (12).
Abstract:
Provided are a traveling wave tube and a high-frequency circuit system such that the product life span of the traveling wave tube operating in multiple modes can be extended while variations in gain and amplification efficiency that accompany switching of the operation modes can be suppressed. The traveling wave tube comprises: an electron gun equipped with a cathode that releases electrons, and a heater that provides the cathode with heat energy for releasing the electrons; a helix causing an RF signal to interact with an electron beam formed from the electrons released by the electron gun; a collector for catching the electron beam emitted by the helix; an anode whereby the electrons released from the electron gun are guided into the helix; and a magnetic field application device for generating a magnetic field in order to change the diameter of the electron beam, said magnetic field application device being supplied with electric power for generating the magnetic field from the outside.
Abstract:
Various embodiments of a vacuum electronic device, a hybrid magnet for a vacuum electronic device and methods of making a hybrid magnet for a vacuum electronic device are disclosed herein. In one embodiment, a hybrid magnet for a vacuum electronic device includes a first magnet, a second magnet positioned in spaced-apart relation with the first magnet and defining a gap between the first magnet and the second magnet, and a non-magnetic spacer positioned in a portion of the gap between the first magnet and second magnet and connected to the first magnet and the second magnet.
Abstract:
A permanent magnet focusing system includes an electron gun that provides an electron ribbon beam having an elliptical shape. A plurality of permanent magnets provide transport for the electron ribbon beam. The permanent magnets produce a non-axisymmetric periodic permanent magnet (PPM) focusing field to allow the electron ribbon beam to be transported in the permanent magnet focusing system.
Abstract:
An electron beam tube device has a magnetic frame with the top part being pivotable so as to pivot from a closed position in which the top part, including an electromagnetic coil covers the electron beam tube to an open position in which the electron beam tube is uncovered. This allows electron beam tubes with either large parts or integral parts such as output feeders to be removed from the magnetic frame without complete removal of the top plate.
Abstract:
A klystron tube for amplifying signals at microwave radio frequencies utilizes an electron source for emitting electrons through a field focused by a high energy magnet in the RF section of the tube. After the electrons have passed through the active area of the tube, the electrons strike the collector which, in this case, is a multistage depressed collector. The multiple stages of the depressed collector are connected to high energy voltage sources of different potentials. The magnet used for focusing the electron beam is closed (no open pole pieces) at the multistage depressed collector so that no magnetic flux reversals are present to affect the beam dispersal, due to electrostatic space charge forces, onto the multistage depressed collector.
Abstract:
A magnetron, and a microwave oven and a high frequency heating apparatus each equipped with the same use, a single permanent magnet disposed above or below an anode, a pole piece near the permanent magnet that has a magnetic flux dispersing structure, and another pole piece opposite to the permanent magnet that has a magnetic flux concentrating structure. In accordance with the present invention, even though a single permanent magnet is provided, magnetic flux density is rendered uniform across an activating space, so that the volume and parts of the magnetron are reduced and the curtailment of manufacturing costs is realized.