Abstract:
A method and computer system are provided for performing a comparison computation, e.g. for use in a check procedure for a reciprocal square root operation. The comparison computation compares a multiplication of three values with a predetermined value. The computer system performs the multiplication using multiplier logic which is configured to perform multiply operations in which two values are multiplied together. A first and second of the three values are multiplied to determine a first intermediate result, w1. The digits of w1 are separated into two portions, w1,1 and w1,2. The third of the three values is multiplied with w1,2 and the result is added into a multiplication of the third of the three values with w1,1 to thereby determine the result of multiplying the three values together. In this way the comparison is performed with high accuracy, whilst keeping the area and power consumption of the multiplier logic low.
Abstract:
Apparatuses and methods of manufacturing same, systems, and methods for generating a starting estimate for radix-16 square root iterative calculation using hardware, including a radix-4 partial remainder-divisor (PD) table, which is used for both division and square root operations, are described. In one aspect, a part of a radicand for a radix-16 square root iterative operation is used to determine column/root and row/partial radicand values, which are then used to determine a starting estimate from a radix-4 PD table for the radix-16 square root iterative operation.
Abstract:
A method and computer system are provided for performing a comparison computation, e.g. for use in a check procedure for a reciprocal square root operation. The comparison computation compares a multiplication of three values with a predetermined value. The computer system performs the multiplication using multiplier logic which is configured to perform multiply operations in which two values are multiplied together. A first and second of the three values are multiplied to determine a first intermediate result, w1. The digits of w1 are separated into two portions, w1,1 and w1,2. The third of the three values is multiplied with w1,2 and the result is added into a multiplication of the third of the three values with w1,1 to thereby determine the result of multiplying the three values together. In this way the comparison is performed with high accuracy, while keeping the area and power consumption of the multiplier logic low.
Abstract:
To carry out evaluation of a road surface property easily and in a short period of time without being costly. Measurement data of a road surface measured for a predetermined road width along a path of a road to be measured is acquired; a unit area having a preset length dimension along the path in the road width is set along the path; a model plane in the unit area is set based on the measurement data at each point in the unit area; point group data is generated from a spaced amount of the model plane and each point in the unit area, visualize and display the spaced amount in the path, and display a result of evaluation obtained through statistical processing with the path shown on a map.
Abstract:
Method and computer system for implementing an operation on ≧1 floating point input, in accordance with a rounding mode, e.g. using a Newton-Raphson technique. The floating point result comprises a p-bit mantissa. An unrounded proposed mantissa result is determined using the Newton-Raphson technique, wherein a p-bit rounded proposed mantissa result, t, corresponds to a rounding of the unrounded proposed mantissa result in accordance with the rounding mode, with k leading zeroes. If an increment to the (m−k)th bit of the unrounded result would affect the p-bit rounded result then the input(s) and bits of the unrounded result are used to determine a check parameter which is indicative of a relationship between an exact result and the unrounded result if the (m−k)th bit were incremented. The p-bit mantissa of the floating point result, is determined in dependence upon the check parameter, to be either t or t+1.
Abstract:
Methods, apparatuses, and computer program products for squaring an operand include identifying a fixed-point value with a fixed word size and a substring size for substrings of the fixed-point value, wherein the fixed-point value comprises a binary bit string. A square of the fixed-point value can be determined using the fixed point value, the substring size, and least significant bits of the fixed-point value equal to the substring size.
Abstract:
A method includes receiving a first element of a Galois Field of order qm, where q is a prime number and m is a positive integer. The first element is raised to a predetermined power so as to form a second element z, wherein the predetermined power is a function of qm and an integer p, where p is a prime number which divides qm−1. The second element z is raised to a pth power to form a third element. If the third element equals the first element, the second element multiplied by a pth root of unity raised to a respective power selected from a set of integers between 0 and p−1 is output as at least one root of the first element.
Abstract:
A processing apparatus has combined divide-square root circuitry for performing a radix-N SRT divide algorithm and a radix-N SRT square root algorithm, where N is an integer power-of-2. The combined circuitry has shared remainder updating circuitry which performs remainder updates for a greater number of iterations per cycle for the SRT divide algorithm than for the SRT square root algorithm. This allows reduced circuit area while avoiding the SRT square root algorithm compromising the performance of the SRT divide algorithm.
Abstract:
In an aspect, a processor includes circuitry for iterative refinement approaches, e.g., Newton-Raphson, to evaluating functions, such as square root, reciprocal, and for division. The circuitry includes circuitry for producing an initial approximation; which can include a LookUp Table (LUT). LUT may produce an output that (with implementation-dependent processing) forms an initial approximation of a value, with a number of bits of precision. A limited-precision multiplier multiplies that initial approximation with another value; an output of the limited precision multiplier goes to a full precision multiplier circuit that performs remaining multiplications required for iteration(s) in the particular refinement process being implemented. For example, in division, the output being calculated is for a reciprocal of the divisor. The full-precision multiplier circuit requires a first number of clock cycles to complete, and both the small multiplier and the initial approximation circuitry complete within the first number of clock cycles.
Abstract:
A digital signal processor (DSP) includes an instruction fetch unit, an instruction decode unit, a register set and a plurality of work units in communication with the instruction decode unit. A first embodiment calculates two divisions on packed numerators and packed denominators. The DSP work units calculate indexes into a 1/d look-up table and make a final sign correction. A second embodiment calculates an approximation of a vector magnitude of a complex number x+jy. The approximation is based upon √(x2+y2)≈α*max(|x|, |y|)+β*min(|x|, |y|). The DSP work units calculate the absolute values, find the maxima and minima, and form the packed results of two vector magnitude calculations.
Abstract translation:数字信号处理器(DSP)包括与指令解码单元通信的指令获取单元,指令解码单元,寄存器组和多个工作单元。 第一实施例计算包装分子和包装分母上的两个部分。 DSP工作单元将索引计算到1 / d查找表中,并进行最终符号校正。 第二实施例计算复数x + jy的矢量幅度的近似。 近似值基于√(x2 + y2)≈α* max(| x |,| y |)+&bgr; * min(| x |,| y |)。 DSP工作单元计算绝对值,找到最大值和最小值,并形成两个矢量幅度计算的压缩结果。