Abstract:
A circuit has a magnetic sensor that produces an uncompensated magnetic sensor output signal. A temperature sensor produces an ambient temperature signal. A compensation circuit is connected to the magnetic sensor and the temperature sensor. The compensation circuit is configured to add a computed temperature compensation signal to the uncompensated magnetic sensor output signal to produce a magnetic sensor temperature compensated output signal that reduces thermally induced variation of the uncompensated magnetic sensor output signal.
Abstract:
An apparatus has a reference magnetic tunnel junction with a high aspect ratio including a reference layer with magnetization along a minor axis and a storage layer with magnetization along a major axis. The storage layer magnetization is substantially perpendicular to the magnetization along the minor axis. The magnetization orientation between the minor axis and the major axis is maintained by shape anisotropy caused by the high aspect ratio.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
A circuit includes a magnetic logic unit including input terminals, output terminals, a field line, and magnetic tunnel junctions (MTJs). The field line electrically connects a first and a second input terminal, and is configured to generate a magnetic field based on an input to at least one of the first and the second input terminal. The input is based on a first analog input to the circuit. Each MTJ is electrically connected to a first and a second output terminal, and is configured such that an output of at least one of the first and the second output terminal varies in response to a combined resistance of the MTJs. The resistance of the MTJs varies based on the magnetic field. The circuit is configured to mix the first analog input and a second analog input to generate an analog output based on the output of the second output terminal.
Abstract:
An apparatus includes a circuit and a field line. The circuit includes a magnetic tunnel junction including a storage layer and a sense layer. The field line is configured to generate a magnetic field based on an input signal, where the magnetic tunnel junction is configured such that a magnetization direction of the sense layer and a resistance of the magnetic tunnel junction vary based on the magnetic field. The circuit is configured to amplify the input signal to generate an output signal that varies in response to the resistance of the magnetic tunnel junction.
Abstract:
A memory device includes a magnetic layer including a plurality of magnetic random access memory (MRAM) cells, a first conductive layer, a layer including a strap connecting MRAM cells included in the plurality of MRAM cells, and a second conductive layer. The first conductive layer includes a conductive portion electrically connected to at least one of the plurality of MRAM cells, and a field line configured to write data to the at least one of the plurality of MRAM cells. The second conductive layer includes a conductive interconnect electrically connected to the at least one of the plurality of MRAM cells, where the magnetic layer is disposed between the first conductive layer and the second conductive layer. At least one of the plurality of MRAM cells is directly attached to the second conductive layer and the strap.
Abstract:
A check engine includes a plurality of comparators each including a first directional characteristic aligned to store at least one reference bit included in a set of reference bits, and a second directional characteristic aligned to present at least one target bit included in a set of target bits. Each of the plurality of comparators is configured to produce an output representing a level of matching between the at least one target bit and the at least one reference bit, based on a relative alignment between the first directional characteristic and the second directional characteristic. The check engine is configured such that the outputs of the plurality of comparators are combined to produce a combined output. The check engine is configured to determine that the set of target bits matches the set of reference bits based on the combined output of the plurality of comparators.
Abstract:
Disclosed herein is a method of forming electronic device having thin-film components by using trenches. One or more of thin-film components is formed by depositing a thin-film in the trench followed by processing the deposited thin-film to have the desired thickness.
Abstract:
A memory device includes a plurality of magnetic random access memory (MRAM) cells, a field line, and a field line controller configured to generate a write sequence that traverses the field line. The write sequence is for writing a multi-bit word to the plurality of MRAM cells. The multi-bit word includes a first subset of bits having a first polarity and a second subset of bits having a second polarity. The write sequence writes concurrently to at least a subset of the plurality of MRAM cells corresponding to the first subset of bits having the first polarity, then subsequently writes concurrently to a remaining subset of the plurality of MRAM cells corresponding to the second subset of bits having the second polarity.
Abstract:
A magnetic random access memory (“MRAM”) cell includes: (1) a first magnetic layer having a first magnetization direction and a magnetic anisotropy axis; (2) a second magnetic layer having a second magnetization direction; and (3) a spacer layer disposed between the first magnetic layer and the second magnetic layer. The MRAM cell also includes a field line magnetically coupled to the MRAM cell and configured to induce a write magnetic field along a magnetic field axis, and the magnetic anisotropy axis is tilted relative to the magnetic field axis. During a write operation, the first magnetization direction is switchable between m directions to store data corresponding to one of m logic states, with m>2, at least one of the m directions is aligned relative to the magnetic anisotropy axis, and at least another one of the m directions is aligned relative to the magnetic field axis.