Abstract:
An embodiment of the invention involves increasing the penalty stiffness within a finite element simulation increment, which is more accurate because it avoids following a solution path with significant non-physical penetrations. An embodiment of the present invention begins by determining a first value of a parameter used by a finite element simulation of a load increment. Next, a first solution of the finite element simulation is determined by performing Newton iterations using the first value of the parameter until a first convergence check is satisfied. Then, a second value the parameter is determined wherein the second value of the parameter is unequal to the first value of the parameter. Finally, a second solution of the finite element simulation is determined by continuing the Newton iterations using the second value of the parameter until a second convergence check is satisfied, the first convergence check being different than the second convergence check.
Abstract:
In the proposed approach cluster elements (bins) are made available as a keypad in the form of a cluster map. The user directly selects the cluster element (bin) with a mouse, touch or actual keypad. For each of the associated attributes, a cluster map is available that orders the attributes from high-to-low by color or shade intensity. When a cluster element is selected in one cluster map, that same cluster element is also highlighted in other cluster maps. For each of the cluster maps, a value axis is available which shows the value of the parameter for the selected cluster element. In the case of numerical values, the high/low attribute pattern across the cluster maps is easily visible. The selected data objects in the cluster map are displayed in a separate widget.
Abstract:
A computer-implemented method for use in analyzing a model of a repetitive structure includes generating a plurality of blocks based on the model such that the blocks are arranged end to end. The method also includes defining at least one boundary condition on an inlet of the model and on an outlet of the model, generating a plurality of constraints to be applied to the blocks to define connectivity between adjacent blocks, defining an inlet state based on the boundary condition and at least a portion of the constraints. The method further includes detecting when a first block passes a trigger plane at the inlet of the model, erasing a state of a second block at the outlet of the model, shuffling the second block to an inlet zone, and resetting the state of the second block to the inlet state.
Abstract:
An embodiment of the invention involves increasing the penalty stiffness within a finite element simulation increment, which is more accurate because it avoids following a solution path with significant non-physical penetrations. An embodiment of the present invention begins by determining a first value of a parameter used by a finite element simulation of a load increment. Next, a first solution of the finite element simulation is determined by performing Newton iterations using the first value of the parameter until a first convergence check is satisfied. Then, a second value the parameter is determined wherein the second value of the parameter is unequal to the first value of the parameter. Finally, a second solution of the finite element simulation is determined by continuing the Newton iterations using the second value of the parameter until a second convergence check is satisfied, the first convergence check being different than the second convergence check.