Abstract:
A device is provided for fluid treatment, in particular for waste water treatment. The fluid is led along a surface (3) coated with biological material. A wiper element (5) is provided, which brushes the surface (3) not as a whole, but in paths. The path course is selected such that the coated surface (3) is successively brushed in sections.
Abstract:
The invention relates to a permanent magnet rotor for an electric motor, in which the permanent magnets inside the rotor extend parallel to the rotation axis of the rotor, and in the area of the radially outer longitudinal edges of the permanent magnets, grooves that are open to the outside are formed on the outer periphery of the rotor. These groves are each, in a peripheral direction, slanted or curved with regard to the longitudinal edge of the adjacent permanent magnets. The center line of each groove intersects the longitudinal edge of the adjacent permanent magnet at least once. The grooves on the outside of the rotor have, in the peripheral direction, a smaller width than in an area of the groove situated radially further inside, and the cross-sectional shape of the groove is constant over the length of the rotor. The invention also relates to a method for producing a rotor of the aforementioned type.
Abstract:
The invention relates to a pressure sensor with a carrier (2), which in an inner region comprises a membrane (4) on which at least one first measurement element (R1−) for detecting a pressure impingement of the membrane (4) is arranged, wherein additionally at least one second measurement element (R3−) for detecting a pressure impingement of the membrane (4) is arranged on the membrane, wherein the first measurement element (R1−) and the second measurement element (R3−) are arranged distanced differently far from the edge of the membrane, and the output signals of the first and the second measurement element (R1−, R3−) are evaluated together in a manner such that the two measurement elements (R1−, R3−) detect a differential pressure acting on the membrane (4), and thereby compensate the influence of the system pressure acting on both sides of the membrane (4).
Abstract:
A device is provided for fluid treatment, in particular for waste water treatment. The fluid is led along a surface (3) coated with biological material. A wiper element (5) is provided, which brushes the surface (3) not as a whole, but in paths. The path course is selected such that the coated surface (3) is successively brushed in sections.
Abstract:
The electric motor is equipped with an electronic control, for example in the form of a frequency converter (2) and comprises at least one Seebeck element (6) whose one side is connected to the motor (1) in a heat-conducting manner and whose other side is in heat-conducting connection with a cooling medium. The electrical output power of the Seebeck element (6) is led to the electronic control (2) of the motor (1).
Abstract:
A method for controlling the firing angle of a single-phase AC powered electric motor is provided which is triggered by at least one locking electronic switch, such as a triac (T1 and T4) located between the distribution voltage (UV) and at least one motor winding (A, B). According to said method, intervals are defined within which the triacs (T2 to T4) are to be fired according to the curve of the distribution voltage (UV) and the voltage (UEMK) induced in the respective winding in order to allow the motor to start as quickly and smoothly as possible and run quietly and at high efficiency.
Abstract:
The methods serves for activating an electric motor of a metering pump with which the fluid quantity (Vnom) to be delivered is set by an external impulse trigger, wherein a predetermined delivery quantity (Vnom) is allocated to each impulse (t). The control detects the temporal interval (Δt) of the two last-received impulses and activates the electric motor such that the fluid quantity to be delivered, taking the previously evaluated interval as a basis, is distributed over the subsequent impulse interval.
Abstract:
In a device for biological fluid treatment, fluid is led along surfaces coated with microorganisms, which form parts of disks drivable about a rotation axis. The surfaces are formed by recesses lying in the disks and the disks are arranged to one another such that the leading of the fluid is effected through the recesses, and a recess of one disk is delimited in a channel-forming manner by the adjacent other disk movable relative to this.
Abstract:
The invention relates to a method for detecting a differential pressure or for correcting a pressure value detected in the fluid on the basis of a pressure of a surrounding medium, wherein at a first point in time the pressure of the surrounding medium is detected and at a later, second point in time the pressure of the fluid is detected, and the pressure value detected in the fluid is corrected on the basis of the pressure of the surrounding medium. The invention furthermore relates to a pump system with a level sensor in which this method is applied, as well as to the use of a pressure sensor in such a pump system.
Abstract:
A dosing pump assembly (9) is provided which is adapted to admix a liquid reducing agent to an exhaust gas flow. The dosing pump assembly includes an assembly housing (12) that houses an electric drive (15), a transmission (16), a membrane pump (17), and control and/or regulating electronics. The assembly housing (10) further includes a pre-mixing device in which the liquid reducing agent is impinged upon with a pressurized gas flow.