Abstract:
A system for re-distributing light emitted from a light source using an optical element is described. The optical element is manufactured using a bulk matrix material, and diffusing particles and/or scattering particles are embedded within the bulk material. The optical element is coupled to the light source to capture emitted light and redistribute the light in a desired angular distribution pattern depending on the ratio of total weight of diffusing particles to total weight of scattering particles.
Abstract:
A contactless switch module, which is actuatable between a closed circuit position and an open circuit position, a plurality of magnetic field sensing sensors, and a plurality of magnets. The switch also includes a multi-channel switch controller. Each one of the plurality of magnetic field sensing sensors is communicatively coupled to an input channel of the multi-channel switch controller. The multi-channel switch controller is configured to determine a switch state based at least upon the respective states of its input channels.
Abstract:
An incandescent bulb luminance matching LED circuit for causing the luminance of an LED to match the luminance of an incandescent bulb is disclosed. The incandescent bulb luminance matching LED circuit includes an input port (26, 56 or 82), an output port (28, 58 or 98), one or more light emitting diodes (22, 24, . . . or 88, 90 . . .), and a voltage (20 or 89) and/or current (50 or 86) compensation block. The compensation block(s) is connected in circuit with the light emitting diode(s) between the input port and the output port and compensates for voltage and/or current changes in the power applied to the input port such that the luminance of the LED is approximately the same as that of an incandescent bulb. In one embodiment, the compensation block comprises a zener diode (30) connected in series with the light emitting diode(s) (22, 24, . . .) between the input port (26) and the output port (28). In an alternate embodiment, the compensation block comprises one or more current diode(s) (60, 62, . . .) connected in parallel with the light emitting diode(s) (52, 54, . . .) between the input port (56) and the output port (58). In yet another embodiment, the compensation block comprises both a zener diode (92) connected in series with the light emitting diode(s) (88, 90, . . .) and a one or more current diode(s) (100, 102, . . .) connected in parallel with the light emitting diode(s) (88, 90, . . .).
Abstract:
A reconfigurable display system is provided that has an electronic display operatively coupled to a computer and having a display active area and peripheral portions. A touch screen extends over the electronic display and has touch portions adjacent to the peripheral portions. The touch screen provides touch-receiving portions to receive touch inputs and deliver the touch inputs to the computer or the electronic display. An overlay is removably disposed on the touch screen covering at least the touch portions. A plurality of actuatable keys are adjacent to the touch screen and in alignment with the touch-receiving portions of the touch screen. The keys provide touch inputs to the touch-receiving portions when the keys are actuated by a user. A frame secured to the touch screen or the electronic display is positioned over the overlay with the overlay intermediate the frame and the touch screen. The overlay, keys, and the frame are removable from the touch screen.
Abstract:
A contactless switch module, which is actuatable between a closed circuit position and an open circuit position, a plurality of magnetic field sensing sensors, and a plurality of magnets. The switch also includes a multi-channel switch controller. Each one of the plurality of magnetic field sensing sensors is communicatively coupled to an input channel of the multi-channel switch controller. The multi-channel switch controller is configured to determine a switch state based at least upon the respective states of its input channels.
Abstract:
A method and a system for fabricating articles made from thermoset resins using an ionic mold release agent. The invention uses a mold having a metal oxide surface with enhanced mold release characteristics. The release agent is applied internally in the resin composition or externally on the metal oxide surface. The method includes providing a mold, forming a metal oxide surface on the mold, providing an ionic release agent, providing the acid or base conjugate of the release agent at the metal oxide surface, providing a thermoset resin in the mold, and curing the resin in the mold. A method of using float glass having a SnO2 enriched surface, wherein the method includes the steps of providing an ionic release agent externally to the tin oxide surface, is also disclosed.
Abstract:
A method and apparatus for ultrasonic assisted deposition of a release agent onto a workpiece is disclosed. The release agent can be any fluorinated or non-fluorinated phosphorous-containing organic acid. The workpiece can be any workpiece desired to be coated with the release agent, such as a surface needing an anti-stick coating required in a plastic casting or injection mold. Metal oxide workpiece surfaces strongly bond to fluorinated phosphorus-containing organic acids. In particular, the present invention can deposit anti-stick coatings onto smooth or porous surfaces, such as anodized aluminum and its alloys, using ultrasonic assisted deposition
Abstract:
A contactless switch (20) for actuating a system between an open circuit position and a closed circuit position is disclosed. The switch includes a housing (22) and a linear actuator (34) disposed within the housing. The switch also includes a linear-to-rotary motion assembly (30) disposed within the housing. The linear-to-rotary motion assembly is coupled to the linear actuator for producing a rotary motion of the linear-to-rotary motion assembly in response to a linear displacement of the linear-to-rotary motion assembly by the linear actuator. The switch also includes a plurality of Hall effect sensors (106) and magnets (80). The sensors are disposed within the housing and the magnets are disposed on the linear-to-rotary motion assembly. To affect the state change of the switch, the magnets are rotated into and out of close proximity with the sensors by the linear-to-rotary motion assembly when the switch is actuated by applying a force to the linear actuator that causes the linear displacements of the linear-to-rotary motion assembly. A tactile response mechanism (170) is formed with the linear-to-rotary motion assembly to produce a tactile response when the contactless switch is actuated between the open and closed circuit positions.
Abstract:
A modular dashboard assembly for a vehicle, such as a tactical vehicle, is described. In some cases, the dashboard assembly includes a smart back plane and removably attachable front modules. The back plane may facilitate communications between components within the front modules and systems with the vehicle, or between components.
Abstract:
A modular dashboard assembly for a vehicle, such as a tactical vehicle, is described. In some cases, the dashboard assembly includes a smart back plane and removably attachable front modules. The back plane may facilitate communications between components within the front modules and systems with the vehicle, or between components.