Abstract:
In one embodiment, a method for converting an analog input value to a digital output value is disclosed. A successive approximation is performed. The analog input is quantized to a first quantized value, which is converted to a first analog value using a DAC. The first analog value is subtracted from the analog input value to form a first residue. The first residue is quantized to form a second quantized value, and a second residue is formed by converting the second quantized value to a second analog value using the DAC and subtracting the second analog value from the first residue value. The second residue is then quantized to form a third quantized value. The first, second and third quantized values are converted into a digital output value. The first, second and third quantized values each have at least three levels.
Abstract:
Circuits and methods to realize a power-efficient high frequency buffer. The amplitude of a buffered signal is detected and compared with the amplitude of the input signal. The comparison result can be fed back to the digitally-controlled buffer to keep the output gain constant. By using feedback control, the buffer can be kept at the most suitable biasing condition even if the load condition or signal frequency varies.
Abstract:
A drive circuit includes a switching transistor having a design maximum voltage V2 and a cascode transistor having a design maximum voltage V1, wherein the cascode transistor is source-drain coupled in series with the switching transistor. The circuit further includes a current source coupled between an intermediate voltage node and a gate of the cascode transistor. If the drive circuit is a low side driver, the intermediate voltage node receives an intermediate voltage Vmed set below a high supply voltage Vhigh and that meets the following conditions: a) Vmed
Abstract:
For high resolution resistor string DACs, a resistor string is placed in an array of columns and rows, each resistor tap is connected to a switch network, and a decoder is used to select switches to be closed such that sub-DAC voltage comes from the resistor taps connected to the selected switches. The voltages from each row of the resistor string are fed into a multiplexer, wherein the multiplexer produces an output voltage. A method and apparatus are disclosed for implementing the reflective nature of Gray code to design a DAC such that all the switches in a column of the resistor string may be controlled with only one control signal, thereby reducing extra routing costs, surface area, and dynamic power consumed by the circuit.
Abstract:
For coarse resistor string DACs, a resistor string is placed in an array of columns and rows, each resistor tap is connected to a switch network, and a decoder is used to select switches to be closed such that sub-DAC voltage comes from the resistor taps connected to the selected switches. The voltages from each row are fed into multiplexers, wherein the multiplexers produce output voltages. DAC circuit designs extend the resolution of the output voltages by feeding them into a voltage interpolation amplifier. A method and apparatus are disclosed for implementing Gray code to design coarse DAC architecture for voltage interpolation such that the number of switches required by the circuit is significantly reduced, thereby decreasing required surface area, and improving glitch performance without increasing design complexity.
Abstract:
An embodiment of a circuit for driving an under-damped system comprises first and second signal generators. The first generator is operable to generate a first drive signal. And the second generator is operable to receive the first drive signal and a second drive signal, and to generate from the first and second drive signals a system drive signal having a first amplitude for a first duration and having a second amplitude after the first duration, the system drive signal operable to cause the under-damped system to operate in a substantially damped manner. Either or both of the first and second generators may be programmable such that one may adjust the response of any under-damped system by generating an appropriate drive signal instead of by physically modifying the system itself. In another embodiment, an under-damped system is caused to oscillate at a damped frequency having a first phase, and is also caused to oscillate at substantially the damped frequency having a second phase such that the oscillation at the first phase substantially cancels the oscillation at the second phase. Such embodiments may allow one to realize a faster settling time without slowing down the response time of an under-damped system.
Abstract:
In one embodiment, a system for providing short circuit protection is disclosed. The system has a supply circuit and a series switch. The supply circuit has a supply input and a supply output, and is configured to deliver an output current at the supply output, and to disable the supply output if the output current exceeds a first current limit. The series switch coupled between the supply output of the supply circuit and a supply node, and the supply node is configured to be coupled to a load.
Abstract:
In one embodiment, a system for controlling a motor is disclosed. The system has a driver circuit configured to drive a motor, a current sensing impedance coupled to the driver circuit, and an overload detection circuit coupled to the current sending impedance that has a transistor and a detection output node.
Abstract:
The gate of a drive transistor having a drain and source is discharged by a circuit including a sensing circuit configured to sense a drain-to-source voltage of the drive transistor. A first current sink path is coupled to the gate of the drive transistor. The first current sink path applies a high discharge current to the gate of the drive transistor when the sensing current senses a lower drain-to-source voltage of the drive transistor. A second current sink path is also coupled to the gate of the drive transistor. The second current sink path is configured to apply a low discharge current to the gate of the drive transistor when the sensing current senses a higher drain-to-source voltage of the drive transistor.
Abstract:
A circuit includes a charge pump, a first level shifter, a second level shifter, a voltage follower and a current mirror. The charge pump is configured to generate a voltage difference between the input node and the output node. The first level shifter is coupled to the charge pump output and configured to apply a first voltage variation to the charge pump output in response to a bias current. The second level shifter is coupled to the input node and configured to apply a second voltage variation to the charge pump input. The voltage follower is configured to equalize outputs from the first and second level shifters and provide a difference current which is multiplied by the current multiplier to generate a charging current applied to the charge pump.