Abstract:
Solid or liquid N—H free, C-free, and Si-rich perhydropolysilazane compositions comprising units having the following formula [—N(SiH3)x(SiH2-)y], wherein x=0, 1, or 2 and y=0, 1, or 2 when x+y=2; and x=0, 1 or 2 and y=1, 2, or 3 when x+y=3 are disclosed. Also disclosed are synthesis methods and applications for the same.
Abstract:
Methods of synthesizing Si—H containing iodosilanes, such as diiodosilane or pentaiododisilane, using a halide exchange reaction are disclosed.
Abstract:
A method includes receiving input corresponding to a proposed configuration of a methanol production facility and identifying a plurality of components utilized to produce methanol at the facility. The method includes determining an alternative configuration that is different from the proposed configuration. Determining the alternative configuration may include identifying resources accessible to a proposed location for the methanol production facility and whether at least one of the resources accessible to the proposed location corresponds to a resource generated by a component identified by the proposed configuration, and determining whether to omit at least one component of the plurality of components identified by the proposed configuration. The method includes omitting the at least one component from the alternative configuration, and generating a report based on the proposed configuration and the alternative configuration. The report includes information indicating a difference between the proposed configuration and the alternative configuration.
Abstract:
The invention concerns an artificial resuscitation bag (5) comprising a deformable bag (54) comprising a gas inlet (54A) and a gas outlet (54B), a gas reservoir (59) comprising an outlet orifice (59A), a first conduit element (56) fluidly connected to the outlet orifice (59A) of the gas reservoir (59) and to the gas inlet (54A) of the deformable bag (54), a first one-way admission valve (57) arranged in the first conduit element (56) and fluidly communicating with the ambient atmosphere for allowing ambient air to enter into the first conduit element (56), and a second one-way valve (55) arranged in the first conduit element (56) between the first one-way admission valve (57) and the gas inlet (54A) of the deformable bag (54) for allowing gas to travel only from the first conduit element (56) to the deformable bag (54).
Abstract:
A method for using a hydrofluorocarbon etching compound selected from the group consisting of 2,2,2-Trifluoroethanamine (C2H4F3N), 1,1,2-Trifluoroethan-1-amine (Iso-C2H4F3N), 2,2,3,3,3-Pentafluoropropylamine (C3H4F5N), 1,1,1,3,3-Pentafluoro-2-Propanamine (Iso-C3H4F5N), 1,1,1,3,3-Pentafluoro-(2R)-2-Propanamine (Iso-2R—C3H4F5N) and 1,1,1,3,3-Pentafluoro-(2S)-2-Propanamine (Iso-2S—C3H4F5N), 1,1,1,3,3,3-Hexafluoroisopropylamine (C3H3F6N) and 1,1,2,3,3,3-Hexafluoro-1-Propanamine (Iso-C3H3F6N) to selectively plasma etching silicon containing films, such as a dielectric antireflective coat (DARC) layer (e.g., SiON), alternating SiO/SiN layers, alternating SiO/p-Si layers, versus a photoresist layer and/or a hard mask layer (e.g., amorphous carbon layer), wherein the photoresist layer is reinforced and SiO/SiN and/or SiO/p-Si are etched non-selectively.
Abstract:
Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1≤x
Abstract:
Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1≦x
Abstract:
Disclosed are smart canisters for use in the materials industry. The smart canisters include sensors and communication devices that allow users to continuously monitor various physical and chemical properties of the product insider the canisters. For a variety of products that have limited stability and tend to decompose over time, variations in product properties can adversely impact the process in which the material is used. The smart canister can alert the user, in real time, when the product is starting to deviate from pre-set functional parameters.
Abstract:
Embodiments of the invention generally provide methods and systems that distribute an additive in solid carbon dioxide in an interior of food processing equipment. The additive may be injected into a flow of liquid carbon dioxide upstream of an expander at or adjacent to the interior. Injection of the additive into the interior may be alternated with directing a flow of expanded carbon dioxide into the interior. In some embodiments, the freezing point of the additive with or without a diluent composition and/or additive(s) is lower than a temperature of the liquid carbon dioxide.
Abstract:
Disclosed are silicon containing compounds and their use in vapor deposition methods of hafnium silicate films having a desired silicon concentration. More particularly, deposition of hafnium silicate films by atomic layer deposition using moisture and the disclosed silicon containing compounds produce films having a desired silicon concentration.