Abstract:
A method for noise cancellation, the method may include detecting a voice trigger or receiving an indication regarding an occurrence of a voice trigger; searching, based at least on a timing of occurrence of the voice trigger, for at least one of a noise-period and a voice-period; when finding a noise period then updating one or more noise parameters based on one or more features of sensed audio signals received during the noise period; when finding a voice period then updating one or more voice parameters based on one or more features of sensed audio signals received during the voice period; estimating, based on the one or more noise parameters and the one or more voice parameters, a probability that voice is present at one or more subsequent periods; and cancelling noise at the one or more subsequent periods, based on the voice presence probability
Abstract:
A method in a mobile communication terminal includes receiving signals from a serving cell and from one or more interfering cells. Respective channel responses are estimated in the terminal for the signals received from the interfering cells. A level of interference, caused by the signals of the interfering cells to a signal received from the serving cell, is derived from the channel responses. A Signal to Noise Ratio (SNR) is calculated for the signal received from the serving cell based on the level of interference caused by the signals of the interfering cells. Feedback information is produced based on the SNR and transmitted from the terminal.
Abstract:
A method for communication includes receiving in a receiver signals, which include one or more dedicated reference signals and are transmitted from a transmitter over a communication channel in multiple blocks. The signals in each block, including the dedicated reference signals, are transmitted on a respective group of subcarriers over a respective time interval and are precoded using a respective precoding scheme that maps the signals onto multiple antenna ports of the transmitter. One or more parameters of the communication channel are estimated over the dedicated reference signals included in two or more of the blocks whose respective precoding schemes do not differ from one another. The signals are decoded based on the estimated parameters.
Abstract:
A method for communication includes receiving in a receiver signals, which include one or more dedicated reference signals, that are transmitted from a transmitter over a communication channel in multiple blocks. The signals in each block, including the dedicated reference signals, are transmitted on a respective group of subcarriers over a respective time interval and are precoded using a respective precoding scheme that maps the signals onto multiple antenna ports of the transmitter. Based on the received signals, feedback is computed in the receiver with respect to the communication channel in each of multiple spectral sub-bands, and the feedback for the multiple spectral sub-bands is reported to the transmitter. One or more parameters of the communication channel are estimated jointly over the dedicated reference signals included in each of the spectral sub-bands for which the feedback is reported. The signals are decoded based on the estimated parameters.
Abstract:
A level of ambient noise at a local device is determined. A dynamic range compression (DRC) gain is computed based on the level of ambient noise at the local device. An additional gain factor is computed. A total gain is computed based on an adding of the DRC gain and the additional gain factor. An amplitude of an audio signal is adjusted based on the total gain, wherein the audio signal was transmitted from a remote device and received by the local device.
Abstract:
A method in a mobile communication terminal includes holding a definition of a sub-sampled codebook identifying precoding matrices to be used for providing precoding feedback by the terminal The precoding matrices in the sub-sampled codebook are selected from a master codebook that is made-up of a long-term sub-codebook and a short-term sub-codebook. The definition defines a first subset of the long-term sub-codebook and a second subset of the short-term sub-codebook. A Multiple-Input Multiple-Output (MIMO) signal is received in the terminal via multiple receive antennas. Based on the received MIMO signal, a precoding matrix is selected from the sub-sampled codebook for precoding subsequent MIMO signals transmitted to the terminal. The precoding feedback indicating the selected precoding matrix is calculated.
Abstract:
A device receives a signal that includes human-interpretable audio information. The device detects sound locally and analyzes it to determine if an intermittent component is present. If the intermittent component is present, the received signal is altered so that the audio information is more easily human-interpretable when the signal is performed. The device can be a portable telephone. The intermittent component can be detected, for example, in music.
Abstract:
When a speaker-independent voice-recognition (SIVR) system recognizes a spoken utterance that matches a phonetic representation of a speech element belonging to a predefined vocabulary, it may play a synthesized speech fragment as a means for the user to verify that the utterance was correctly recognized. When a speech element in the vocabulary has more than one possible pronunciation, the system may select the one most closely matching the user's utterance, and play a synthesized speech fragment corresponding to that particular representation.
Abstract:
A method for mobile telecommunication includes receiving in a mobile communication terminal downlink signals from at least first and second cells that coordinate transmission of the downlink signals with one another. Channel feedback is calculated in the terminal based on the received downlink signals. The channel feedback is configured to enable the first cell to precode a first signal destined for the terminal in response to the channel feedback with a first precoding vector, and to enable the second cell to precode a second signal destined for the terminal in response to the channel feedback with a second precoding vector that differs in magnitude from the first precoding vector. The first and second signals convey same data. The channel feedback is transmitted from the terminal. Calculating the channel feedback includes calculating one or more of a single-user Channel Quality Indicator (CQI), a multi-user CQI, and a non-cooperative-transmission CQI.
Abstract:
A method includes receiving in a mobile communication terminal over a communication channel a Multiple-Input Multiple-Output (MIMO) signal that includes at least a transmission addressed to the terminal. A Multi-User Signal to Noise Ratio (MU-SNR) is estimated in the terminal based on the received signal. The MU-SNR is indicative of a power ratio between the transmission addressed to the terminal and remaining components of the signal, which are assumed to include one or more transmissions addressed to one or more other terminals. Feedback, which is indicative of the communication channel and is based on the MU-SNR, is transmitted from the terminal.