摘要:
Enhancement-mode GaN devices having a gate spacer, a gate metal material and a gate compound that are self-aligned, and a methods of forming the same. The materials are patterned and etched using a single photo mask, which reduces manufacturing costs. An interface of the gate spacer and the gate compound has lower leakage than the interface of a dielectric film and the gate compound, thereby reducing gate leakage. In addition, an ohmic contact metal layer is used as a field plate to relieve the electric field at a doped III-V gate compound corner towards the drain contact, which leads to lower gate leakage current and improved gate reliability.
摘要:
A MISFET, such as a GaN transistor, with low gate leakage. In one embodiment, the gate leakage is reduced with a compensated GaN layer below the gate contact and above the barrier layer. In another embodiment, the gate leakage is reduced by employing a semi-insulating layer below the gate contact and above the barrier layer.
摘要:
A semiconductor device comprising a silicon substrate, a compound semiconductor material, an insulating material between the silicon substrate and the compound semiconductor material, and a top surface comprising means of electrical connection, and passivation material, where the passivation material is silicon nitride, silicon dioxide, or a combination of both. The present invention eliminates the need for a thick electrical insulator between a heat sink and the back surface of a surface mounted device by the inclusion of an AlN seed layer to electrically isolate the silicon substrate of the device. The sidewalls of the device are also electrically isolated from the active area of the device.
摘要:
A self-aligned transistor gate structure that includes an ion-implanted portion of gate material surrounded by non-implanted gate material on each side. The gate structure may be formed, for example, by applying a layer of GaN material over an AlGaN barrier layer and implanting a portion of the GaN layer to create the gate structure that is laterally surrounded by the GaN layer.
摘要:
A MISFET, such as a GaN transistor, with low gate leakage. In one embodiment, the gate leakage is reduced with a compensated GaN layer below the gate contact and above the barrier layer. In another embodiment, the gate leakage is reduced by employing a semi-insulating layer below the gate contact and above the barrier layer.
摘要:
Circuits, structures and techniques for independently connecting a surrounding material in a part of a semiconductor device to a contact of its respective device. To achieve this, a combination of one or more conductive wells that are electrically isolated in at least one bias polarity are provided.
摘要:
An enhancement mode GaN transistor having a gate pGaN structure having a thickness which avoids dielectric failure. In one embodiment, this thickness is in the range of 400 Å to 900 Å. In a preferred embodiment, the thickness is 600 Å.
摘要:
A self-aligned transistor gate structure that includes an ion-implanted portion of gate material surrounded by non-implanted gate material on each side. The gate structure may be formed, for example, by applying a layer of GaN material over an AlGaN barrier layer and implanting a portion of the GaN layer to create the gate structure that is laterally surrounded by the GaN layer.
摘要:
An integral impedence is formed on or within a lead frame pin of a semiconductor package and receives a connection from an electrode of a semiconductor die within the package to eliminate the need for adjustment and protective impedences external of the package. The impedence comprises passives such as resistors, capacitors, diodes or inductors which modify the performance of the package for new semiconductor device characteristics. The impedences may have positive or negative temperature coefficients and are in close thermal communication with the semiconductor die.
摘要:
An integral impedence is formed on or within a lead frame pin of a semiconductor package and receives a connection from an electrode of a semiconductor die within the package to eliminate the need for adjustment and protective impedences external of the package. The impedence comprises passives such as resistors, capacitors, diodes or inductors which modify the performance of the package for new semiconductor device characteristics. The impedences may have positive or negative temperature coefficients and are in close thermal communication with the semiconductor die.