Abstract:
In one embodiment, a communication device samples a particular frequency hopping sequence during only a particular specified sub-timeslot of a timeslot. If a transmission energy is not detected during the specified sub-timeslot, the device turns off its receiver for a remainder of the timeslot. Otherwise, it continues to sample the particular frequency hopping sequence for at least one or more additional sub-timeslots of the remainder of the timeslot. In another embodiment, a communication device determines whether a neighboring communication device is operating in a first mode or a second mode. If in the second mode, it transmits a transmission to the neighboring communication device starting at any sub-timeslot of the plurality of sub-timeslots. If in the first mode, it transmits the transmission to the neighboring communication device while ensuring that the transmission is actively energized during a particular specified sub-timeslot.
Abstract:
In one embodiment, each device in a frequency hopping communication network independently determines its own local unicast listening schedule, and discovers a neighbor unicast listening schedule for each of its neighbors. The devices also synchronize to a common broadcast schedule for the network that simultaneously overlays a configured portion of all unicast listening schedules in the network. Accordingly, the device operate in a receive mode according to their local unicast listening schedule and the common broadcast schedule during the overlaid configured portion, and in a transmit mode according to each neighbor unicast listening schedule and the common broadcast schedule during the overlaid configured portion depending upon a destination of transmitted traffic.
Abstract:
A system and method adds and manages entries on a list of entries of routing information to allow the top entry to be used for routing to a destination corresponding to the list. Costs of a wireless link may be a function of the success rate experienced on that wireless link.
Abstract:
A system and method adds and manages entries on a list of entries of routing information to allow the top entry to be used for routing to a destination corresponding to the list. Costs of a wireless link may be a function of the success rate experienced on that wireless link.
Abstract:
In one embodiment, a transmitter in a communication network receives an indication of active transmission times of a receiver to which the transmitter attempts to reach with first transmissions, the active transmission times indicating respective times of second transmissions initiated by the receiver. Based on determining when the first transmissions occur, the transmitter may then compute a link reliability metric for a link from the transmitter to the receiver by excluding one or more of the first transmissions from the indicated active transmission times of the second transmissions. In one embodiment, the active transmission times are in the past and the reliability metric excludes any first transmissions in the past during those times, while in another embodiment the active transmission times are scheduled in the future and the reliability metric does not include any first transmissions since the first transmissions may be scheduled to avoid the active transmission times.
Abstract:
A system and method stores wirelessly received communications for wireless retransmission, making space in a storage device, if necessary, by deleting any one or more communications corresponding to the same group as the received communication. If storage in the storage device remains insufficient, communications that have been previously retransmitted by that same device are deleted, according to one or more characteristics of such stored communications, such as age or number of times an instance of that communication has been received. If storage in the storage device remains insufficient, communications of a different group are deleted according to one or more characteristics of the stored communications.
Abstract:
According to one embodiment, techniques are provided to enable secure communication among devices in a mesh network using a group temporal key. An authenticator device associated with a mesh network stores a pairwise master key for each of a plurality of devices in a mesh network upon authentication of the respective devices. Using the pairwise master key, the authenticator device initiates a handshake procedure with a particular device in the mesh network to mutually derive a pairwise temporal key from the pairwise master key. The authenticator device encrypts and signs a group temporal key using the pairwise temporal key for the particular device and sends the group temporal key encrypted and signed with the pairwise temporal key to the particular device.
Abstract:
Techniques are provided for adaptive routing of authentication packets in a network, such as a wireless mesh network. At an authenticated device in the network, an authentication packet is received over the network from a device that is seeking authentication. The authentication packet is encapsulated for transmission in Layer 3 packets over an Internet Protocol (IP) tunnel to an authenticator device associated in the network. Similarly, for an authentication packet encapsulated in Layer 3 packets from the authenticator device over the IP tunnel, the authentication packet is decapsulated from the Layer 3 packets and transmitted over the network to the device seeking authentication.
Abstract:
A system and method communicates commands from a command originator to receiving devices, yet the receiving devices do not confirm receipt of the command. The most current command (e.g. the one with the highest sequence number) is rebroadcast by the command originator and the receiving devices, tending to be more frequent upon detection of an event indicating that the most current command was not received by at least one other device, and less frequently upon detection of an event indicating that the most current command was provided with sufficient duplication that if another device could receive it, the device likely did receive it, subject to a maximum and minimum rate.
Abstract:
A system and method stores wirelessly received communications for wireless retransmission, making space in a storage device, if necessary, by deleting any one or more communications corresponding to the same group as the received communication. If storage in the storage device remains insufficient, communications that have been previously retransmitted by that same device are deleted, according to one or more characteristics of such stored communications, such as age or number of times an instance of that communication has been received. If storage in the storage device remains insufficient, communications of a different group are deleted according to one or more characteristics of the stored communications.