Abstract:
Methods and apparatus for reverse link acknowledgement in a wireless local area network. A method includes receiving, at a first node, a data communication over a common channel, the data communication being decodable by other nodes. The method also includes determining transmission resources from the data communication, wherein the transmission resources are different for each node, and transmitting a response over the common channel using the determined transmission resources. An apparatus includes a transmitter configured to transmit to a plurality of nodes a data communication over the common channel, and a receiver configured to receive responses from the plurality of nodes, wherein each response was sent using different transmission resources determined from the data communication.
Abstract:
The subject matter disclosed herein relates to a system and method for wirelessly receiving a first communication from a first mobile device. A processing delay may be measured. An acknowledgement communication indicating receipt of the first communication may be generated. A measurement of the processing delay may be broadcast in a broadcast packet, for example, or by transmitting a subsequent communication including the processing delay in response to receiving a second communication having a request for the measurement of the processing delay.
Abstract:
An apparatus for communications including a processing system configured to generate a plurality of spatial streams for communicating with a plurality of nodes, the processing system being further capable of determining an allocation of the spatial streams to each of the nodes based on at least one metric for each of the nodes.
Abstract:
The subject matter disclosed herein relates to systems, methods, apparatuses, devices, articles, and means for updating radio models. For certain example implementations, a method for one or more server devices may comprise receiving at one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment. At least one radio model that is stored in one or more memories may be updated based, at least in part, on the at least one measurement to produce at least one updated radio model. The at least one radio model and the at least one updated radio model may correspond to the indoor environment. The at least one updated radio model may be transmitted to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. Other example implementations are described herein.
Abstract:
Disclosed are methods and apparatuses for communications by which a data packet is generated for transmission to a node, or by which a data packet is received from a node, the data packet including a header and data, wherein a channel designation for a node to send an acknowledgement to an apparatus or a transmitting node is embedded in the header of the data packet.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses to allow for location related information for a region of space within a structure to be divided into blocks and selectively provided in an efficient manner to a mobile station and/or a proxy device associated therewith. The mobile station may, for example, use the blocks of location related information to support signal-based position estimation and/or other like location based services.
Abstract:
An appliance facilitates localization of a station (STA) in a network, for example, a short-range wireless network. An automatic response to a request for a measurement related communication is provided. The appliance can include a radio frequency (RF) interface and a media access control (MAC) section. The MAC section can receive the request and generate the automatic response immediately after a uniform period that is uniform among any such appliance within the network. The appliance performs only the generation of the automatic response, though the response can include additional information such as (x, y) coordinates of the appliance.
Abstract:
The subject matter disclosed herein relates to systems, methods, apparatuses, devices, articles, and means for updating radio models. For certain example implementations, a method for one or more server devices may comprise receiving at one or more communication interfaces at least one measurement that corresponds to a position of a first mobile device within an indoor environment. At least one radio model that is stored in one or more memories may be updated based, at least in part, on the at least one measurement to produce at least one updated radio model. The at least one radio model and the at least one updated radio model may correspond to the indoor environment. The at least one updated radio model may be transmitted to enable a second mobile device to use the at least one updated radio model for positioning within the indoor environment. Other example implementations are described herein.
Abstract:
Methods and apparatuses are directed to calibrating a misconfigured wireless access point. One method may include receiving a position of mobile station(s) and wireless signal model measurements derived from packets exchanged between the mobile station(s) and a plurality of wireless access points, receiving positions and/or identities of the plurality of wireless access points used in determining the position of the mobile station(s), comparing a position of the mobile station(s) with wireless signal model measurements, and identifying a misconfigured wireless access point based upon the comparing. Another method may include receiving positions associated with a plurality of wireless access points, determining a position of a mobile station based upon a wireless signal model, comparing the position of the mobile station and the wireless signal model with the positions associated with the plurality of wireless access points, and determining whether at least one wireless access point is misconfigured.
Abstract:
Apparatuses and methods for adjusting wireless-derived positions of a mobile station using a motion sensor are presented. One method includes estimating a position of a mobile station based upon wireless signal measurements and measuring a movement of the mobile station using a relative motion sensor. The method further includes detecting a displacement of the mobile station based upon the measured movement, determining that the displacement is below a threshold and then adjusting the estimated position of the mobile station using information from the relative motion sensor. An apparatus includes a wireless transceiver, a relative motion sensor, a processor coupled to the wireless transceiver and the relative motion sensor, and a memory coupled to the processor. The memory stores executable instructions and data for causing the processor to execute methods for adjusting wireless-derived positions using a motion sensor.