Reverse drive assist for long wheelbase dual axle trailers
    1.
    发明授权
    Reverse drive assist for long wheelbase dual axle trailers 有权
    长轴距双轴拖车的反向驱动辅助

    公开(公告)号:US09393996B2

    公开(公告)日:2016-07-19

    申请号:US13734764

    申请日:2013-01-04

    CPC classification number: B62D13/06 B62D5/04 B62D13/005 B62D13/025

    Abstract: A controller and control method assists a driver with backing up of a vehicle with an attached trailer. The vehicle has a front axle with steerable front wheels controlled by the driver and a rear axle with non-steerable rear wheels. The trailer has a front axle with non-steerable front wheels and a rear axle with steerable rear wheels controlled by a trailer steering controller. The controller receives an operator-controlled vehicle steering angle and a measured hitch angle. The controller determines a trailer steering angle based on the operator-controller vehicle steering angle and the measured hitch angle. The controller continuously controls the trailer (e.g., via a steering angle of the rear wheels) to maintain a trajectory with substantially no lateral slippage.

    Abstract translation: 控制器和控制方法协助驾驶员使用附带的拖车备份车辆。 该车辆具有前轮,其具有由驾驶员控制的可转向前轮和具有不可操纵后轮的后桥。 拖车具有前轮,其具有不可操纵的前轮,后轮具有由拖车转向控制器控制的可转向后轮。 控制器接收操作员控制的车辆转向角和测量的牵引角。 控制器基于操作者控制器车辆转向角度和测量的牵引角确定拖车转向角度。 控制器连续地控制拖车(例如经由后轮的转向角度)来维持基本上没有横向滑动的轨迹。

    Humanoid robot push recovery on level and non-level ground
    2.
    发明授权
    Humanoid robot push recovery on level and non-level ground 有权
    人型机器人在水平和非水平地面上推动恢复

    公开(公告)号:US08849454B2

    公开(公告)日:2014-09-30

    申请号:US13425383

    申请日:2012-03-20

    CPC classification number: B62D57/032 Y10S901/01

    Abstract: A robot controller controls a robot to maintain balance in response to an external disturbance (e.g., a push) on level or non-level ground. The robot controller determines a predicted stepping location for the robot such that the robot will be able to maintain a balanced upright position if it steps to that location. As long as the stepping location predicted stepping location remains within a predefined region (e.g., within the area under the robot's feet), the robot will maintain balance in response to the push via postural changes without taking a step. If the predicted stepping location moves outside the predefined region, the robot will take a step to the predicted location in order to maintain its balance.

    Abstract translation: 机器人控制器控制机器人以响应于水平或非水平地面上的外部干扰(例如,推动)而保持平衡。 机器人控制器确定机器人的预测步进位置,使得如果机器人步进到该位置,则机器人将能够保持平衡的直立位置。 只要步进位置预测步进位置保持在预定区域内(例如,在机器人脚下的区域内),机器人将通过姿势改变来响应于推动而保持平衡,而不采取步骤。 如果预测的步进位置移动到预定区域之外,机器人将采取步骤到预测位置,以保持其平衡。

    Intelligent Stepping For Humanoid Fall Direction Change
    3.
    发明申请
    Intelligent Stepping For Humanoid Fall Direction Change 有权
    智能步进人型落后方向变化

    公开(公告)号:US20100161120A1

    公开(公告)日:2010-06-24

    申请号:US12610865

    申请日:2009-11-02

    CPC classification number: B62D57/032

    Abstract: A system and method is disclosed for controlling a robot having at least two legs that is falling down from an upright posture. An allowable stepping zone where the robot is able to step while falling is determined. The allowable stepping zone may be determined based on leg Jacobians of the robot and maximum joint velocities of the robot. A stepping location within the allowable stepping zone for avoiding an object is determined. The determined stepping location maximizes an avoidance angle comprising an angle formed by the object to be avoided, a center of pressure of the robot upon stepping to the stepping location, and a reference point of the robot upon stepping to the stepping location. The reference point, which may be a capture point of the robot, indicates the direction of fall of the robot. The robot is controlled to take a step toward the stepping location.

    Abstract translation: 公开了一种用于控制具有从直立姿势落下的至少两条腿的机器人的系统和方法。 确定机器人能够在跌落时踏步的允许步进区域。 可以根据机器人的腿部Jacobians和机器人的最大联合速度来确定允许的步进区域。 确定允许的步进区域内用于避免物体的步进位置。 所确定的步进位置最大化包括由待避免的物体形成的角度,步进到步进位置时机器人的压力中心和步进到步进位置时的机器人的参考点的回避角度。 可以是机器人的捕获点的参考点表示机器人的下落方向。 控制机器人向步进位置迈出一步。

    Systems and methods for controlling a legged robot based on rate of change of angular momentum
    4.
    发明申请
    Systems and methods for controlling a legged robot based on rate of change of angular momentum 有权
    基于角动量变化率控制腿式机器人的系统和方法

    公开(公告)号:US20050234593A1

    公开(公告)日:2005-10-20

    申请号:US11096835

    申请日:2005-03-31

    CPC classification number: B62D57/032

    Abstract: Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.

    Abstract translation: 提出了使用腿式机器人的重心角动量的变化率({dot over(H >G ))的系统和方法,以便保持或改善机器人的平衡在一个实施例中,控制系统 确定{dot over(H> G )的当前值,将该值与阈值进行比较,并确定发送给机器人的指令,执行指令使机器人保持稳定或变得更稳定 还提出了系统和方法,其使用从{dot over(H> SUB SUB SUB SUB SUB SUB SUB SUB SUB to to to maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain a a a a a a a a a Rate Rate Rate Rate。。。。。 的角动量(ZRAM)点(A)的变化决定了A与合成地面力的中心位置之间的距离,将该值与阈值进行比较,并确定发送给机器人的指令。

    Systems and methods for controlling a legged robot using a two-phase disturbance response strategy
    5.
    发明授权
    Systems and methods for controlling a legged robot using a two-phase disturbance response strategy 有权
    使用两相干扰响应策略控制腿式机器人的系统和方法

    公开(公告)号:US08145354B2

    公开(公告)日:2012-03-27

    申请号:US12904990

    申请日:2010-10-14

    CPC classification number: B62D57/032

    Abstract: Systems and methods are presented that enable a legged robot to maintain its balance when subjected to an unexpected force. In the reflex phase, the robot withstands the immediate effect of the force by yielding to it. In one embodiment, during the reflex phase, the control system determines an instruction that will cause the robot to perform a movement that generates a negative rate of change of the robot's angular momentum at its centroid in a magnitude large enough to compensate for the destabilizing effect of the force. In the recovery phase, the robot recovers its posture after having moved during the reflex phase. In one embodiment, the robot returns to a statically stable upright posture that maximizes the robot's potential energy. In one embodiment, during the recovery phase, the control system determines an instruction that will cause the robot to perform a movement that increases its potential energy.

    Abstract translation: 提出了系统和方法,使得腿式机器人在受到意想不到的力时保持其平衡。 在反射阶段,机器人能忍受力的立即的影响。 在一个实施例中,在反射阶段期间,控制系统确定将使机器人执行运动的指令,该运动在其质心处产生机器人的角动量的负变化率,其幅度足够大以补偿不稳定效应 的力量。 在恢复阶段,机器人在反射阶段移动后恢复其姿势。 在一个实施例中,机器人返回到使机器人的潜在能量最大化的静态稳定的直立姿态。 在一个实施例中,在恢复阶段期间,控制系统确定将使机器人执行增加其势能的运动的指令。

    Systems and Methods for Controlling a Legged Robot Based on Rate of Change of Angular Momentum
    6.
    发明申请
    Systems and Methods for Controlling a Legged Robot Based on Rate of Change of Angular Momentum 审中-公开
    基于角动量变化速率控制腿式机器人的系统和方法

    公开(公告)号:US20120035762A1

    公开(公告)日:2012-02-09

    申请号:US13274156

    申请日:2011-10-14

    CPC classification number: B62D57/032

    Abstract: Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.

    Abstract translation: 提出了使用腿式机器人的重心角动量({dot over(H)} G)的变化率以保持或改善机器人的平衡的系统和方法。 在一个实施例中,控制系统确定{dot over(H)} G的当前值,将该值与阈值进行比较,并确定发送给机器人的指令。 执行指令使机器人保持稳定或变得更稳定。 还提出了使用从{dot over(H)} G导出的值的系统和方法,以便保持或改善机器人的平衡。 在一个实施例中,控制系统确定角速度(ZRAM)点(A)的零变化率的位置,确定A与合成地面力的中心压力位置之间的距离,将该值与 阈值,并且确定发送给机器人的指令。

    Machine Learning Approach for Predicting Humanoid Robot Fall
    7.
    发明申请
    Machine Learning Approach for Predicting Humanoid Robot Fall 有权
    机器人学习方法预测人型机器人秋季

    公开(公告)号:US20100292838A1

    公开(公告)日:2010-11-18

    申请号:US12696783

    申请日:2010-01-29

    CPC classification number: B25J9/163 B62D57/032 G06N3/008

    Abstract: A system and method is disclosed for predicting a fall of a robot having at least two legs. A learned representation, such as a decision list, generated by a supervised learning algorithm is received. This learned representation may have been generated based on trajectories of a simulated robot when various forces are applied to the simulated robot. The learned representation takes as inputs a plurality of features of the robot and outputs a classification indicating whether the current state of the robot is balanced or falling. A plurality of features of the current state of the robot, such as the height of the center of mass of the robot, are determined based on current values of a joint angle or joint velocity of the robot. The current state of the robot is classified as being either balanced or falling by evaluating the learned representation with the plurality of features of the current state of the robot.

    Abstract translation: 公开了一种用于预测具有至少两条腿的机器人的坠落的系统和方法。 接收由受监督的学习算法产生的诸如决策列表的学习表示。 当将各种力施加到模拟机器人时,可以基于模拟机器人的轨迹产生该学习的表示。 所学习的表示将机器人的多个特征作为输入,并输出表示机器人的当前状态是平衡还是下降的分类。 基于机器人的关节角度或关节速度的当前值来确定机器人的当前状态的多个特征,例如机器人的质心的高度。 通过利用机器人的当前状态的多个特征来评估所学习的表示,将机器人的当前状态分类为平衡或下降。

    Humanoid Fall Direction Change Among Multiple Objects
    8.
    发明申请
    Humanoid Fall Direction Change Among Multiple Objects 有权
    人型生物落后方向改变多个对象

    公开(公告)号:US20100161126A1

    公开(公告)日:2010-06-24

    申请号:US12641163

    申请日:2009-12-17

    CPC classification number: B62D57/032

    Abstract: A system and method is disclosed for controlling a robot having at least two legs, the robot falling down from an upright posture and the robot located near a plurality of surrounding objects. A plurality of predicted fall directions of the robot are determined, where each predicted fall direction is associated with a foot placement strategy, such as taking a step, for avoiding the surrounding objects. The degree to which each predicted fall direction avoids the surrounding objects is determined. A best strategy is selected from the various foot placement strategies based on the degree to which the associated fall direction avoids the surrounding objects. The robot is controlled to implement this best strategy.

    Abstract translation: 公开了一种用于控制具有至少两条腿的机器人的系统和方法,所述机器人从直立姿势落下并且所述机器人位于多个周围物体附近。 确定机器人的多个预测的下降方向,其中每个预测的下降方向与脚部放置策略相关联,例如采取步骤以避免周围物体。 确定每个预测的下降方向避免周围物体的程度。 根据相关秋季方向避免周围物体的程度,从各种脚部放置策略中选择最佳策略。 控制机器人实施这一最佳策略。

    Characterization and classification of pose in low dimension
    9.
    发明授权
    Characterization and classification of pose in low dimension 有权
    低维姿态的表征和分类

    公开(公告)号:US07580774B2

    公开(公告)日:2009-08-25

    申请号:US11746540

    申请日:2007-05-09

    Inventor: Ambarish Goswami

    CPC classification number: G06K9/00369

    Abstract: A BodyMap matrix for a pose includes elements representing Euclidean distances between markers on the object. The BodyMap matrix can be normalized and visualized using a grayscale or mesh image, enabling a user to easily interpret the pose. The pose is characterized in a low-dimensional space by determining the singular values of the BodyMap matrix for the pose and using a small set of dominant singular values to characterize and visually represent the pose. A candidate pose is classified in a low-dimensional space by comparing the characterization of the candidate pose to characterizations of known poses and determining which known pose is most similar to the candidate pose. Determining the similarity of the candidate pose to the known poses is accomplished through distance calculations, including the calculation of Mahalanobis distances from the characterization of the candidate pose to characterizations of known poses and their noisy variations.

    Abstract translation: 用于姿势的BodyMap矩阵包括表示对象上的标记之间的欧几里德距离的元素。 BodyMap矩阵可以使用灰度或网格图像进行归一化和可视化,使用户能够轻松地解读姿势。 姿势的特征在于通过确定用于姿势的BodyMap矩阵的奇异值并使用一组主要奇异值来表征和可视地表示姿态,从而在低维空间中被表征。 通过将候选姿势的表征与已知姿势的特征进行比较并确定哪个已知姿势与候选姿势最相似来将候选姿势分类到低维空间中。 通过距离计算确定候选姿势与已知姿势的相似度,包括从候选姿势的表征到已知姿势的特征以及其噪声变化的马氏距离的计算。

    Momentum-based balance controller for humanoid robots on non-level and non-stationary ground
    10.
    发明授权
    Momentum-based balance controller for humanoid robots on non-level and non-stationary ground 有权
    基于动量的平衡控制器,用于非水平和非静止地面的人形机器人

    公开(公告)号:US09367795B2

    公开(公告)日:2016-06-14

    申请号:US13580477

    申请日:2011-02-24

    CPC classification number: G06N3/008 B62D57/032

    Abstract: A momentum-based balance controller controls a humanoid robot to maintain balance. The balance controller derives desired rates of change of linear and angular momentum from desired motion of the robot. The balance controller then determines desired center of pressure (CoP) and desired ground reaction force (GRF) to achieve the desired rates of change of linear and angular momentum. The balance controller determines admissible CoP, GRF, and rates of change of linear and angular momentum that are optimally close to the desired value while still allowing the robot to maintain balance. The balance controller controls the robot to maintain balance based on a human motion model such that the robot's motions are human-like. Beneficially, the robot can maintain balance even when subjected to external perturbations, or when it encounters non-level and/or non-stationary ground.

    Abstract translation: 基于动量的平衡控制器控制人形机器人以保持平衡。 平衡控制器从机器人的期望运动中获得线性和角动量的所需变化率。 然后平衡控制器确定所需的压力中心(CoP)和所需的地面反作用力(GRF),以实现所需的线性和角动量变化率。 平衡控制器确定线性和角动量的允许CoP,GRF和最佳接近期望值的变化率,同时仍允许机器人保持平衡。 平衡控制器控制机器人基于人体运动模型保持平衡,使得机器人的运动是类似人体的。 有利地,机器人即使在受到外部扰动时也可以保持平衡,或者当遇到非水平和/或非静止地面时,机器人可以保持平衡。

Patent Agency Ranking