Abstract:
The invention relates to a coating method for coating a component surface (4) with a coating agent, in particular for painting a motor vehicle body component with a paint, having the following steps: ⋅ emitting a spray jet (1) of the coating agent onto the component surface (4) of the component to be coated by means of an atomizer (2), said spray jet (1) having a main axis (5) and having an asymmetry with respect to the main axis (5) such that the spray jet (1) generates a spray pattern with a corresponding asymmetry on the component surface (4), and ⋅ at least partially compensating for the asymmetry of the spray jet (1) such that the asymmetry of the resulting spray pattern on the component surface (4) is reduced. The invention further relates to a corresponding coating device.
Abstract:
Methods and apparatuses for controlling plasma generation in a plasma processing chamber to reduce an effective residence time of by-product gases or to control in real time the concentration of certain polymer pre-cursors or reaction by-products in the plasma processing chamber are disclosed. The gas residence time is “effectively” reduced by reducing the plasma reaction for at least a portion of the process time. Thresholds can be provided to control when the plasma reaction is permitted to proceed at the full rate and when the plasma reaction is permitted to proceed at the reduced rate. By reducing the rate of plasma by-product generation at least for a portion of the process time, the by-product gas residence time may be effectively reduced to improve process results.
Abstract:
A capacitively-coupled plasma processing system having a plasma processing chamber for processing a substrate is provided. The plasma processing system includes at least an upper electrode and a lower electrode for processing the substrate, the substrate being disposed on the lower electrode during plasma processing. The plasma processing system further includes means for providing at least a first RF signal to the lower electrode, the first RF signal having a first RF frequency. The first RF signal couples with a plasma in the plasma processing chamber, thereby inducing an induced RF signal on the upper electrode. The plasma processing system further includes means for rectifying the induced RF signal to generate a rectified RF signal such that the rectified RF signal is more positively biased than negatively biased, wherein the substrate is configured to be processed while the rectified RF signal is provided to the upper electrode.
Abstract:
Process for the direct amination of hydrocarbons to aminohydrocarbons, which comprises the steps: a) reaction of a feed stream E comprising at least one hydrocarbon and at least one aminating reagent to form a reaction mixture R comprising aminohydrocarbons and hydrogen and b) electrochemical separation of at least part of the hydrogen formed in the reaction from the reaction mixture R by means of a gastight membrane-electrode assembly having at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane, b1) reduced to hydrogen and/or b2) reacted with oxygen from an oxygen-comprising stream O which is brought into contact with the permeate side of the membrane to form water over the cathode catalyst on the permeate side.
Abstract:
Atmospheric inductively coupled plasma torch comprising a vessel within which the plasma is generated and a coil wound around the periphery of the vessel. The coil has at least two spaced-apart winding layers. The coil is constructed such that all winding layers of a given multi-turn is wound before an adjacent multi-turn is wound. A first end of the coil is coupled to ground, and a second end of the coil is coupled to receive a RF driver signal that is configured to ignite the plasma to facilitate processing.
Abstract:
The invention relates to a coating method for coating a component surface (4) with a coating agent, in particular for painting a motor vehicle body component with a paint, having the following steps: • emitting a spray jet (1) of the coating agent onto the component surface (4) of the component to be coated by means of an atomizer (2), said spray jet (1) having a main axis (5) and having an asymmetry with respect to the main axis (5) such that the spray jet (1) generates a spray pattern with a corresponding asymmetry on the component surface (4), and • at least partially compensating for the asymmetry of the spray jet (1) such that the asymmetry of the resulting spray pattern on the component surface (4) is reduced. The invention further relates to a corresponding coating device.
Abstract:
The invention relates to a pharmaceutical composition comprising cefuroximaxetil and at least one carrageenan selected from the group consisting of κ-carrageenan, λ-carrageenan and -carrageenan. The invention furthermore relates to pellets, to a multiparticulate, pharmaceutical dosage form and to a novel crystalline modification of cefuroximaxetil.
Abstract:
The invention relates to an improved industrial apparatus for the large-scale storage of energy and a process for storing and transporting electric energy by means of this apparatus.
Abstract:
A method for manufacturing a plasma processing system is provided. The method includes providing a movable plasma-facing structure configured to surround a plasma that is generated during processing of a substrate. The method also includes disposing a movable electrically conductive structure outside of the movable plasma-facing structure, wherein both structures configured to be deployed and retracted as a single unit to facilitate handling of the substrate. The movable electrically conductive structure is radio frequency (RF) grounded during the plasma processing. During processing, the RF current from the plasma flows to the movable electrically conductive structure through the movable plasma-facing structure during the plasma processing. The method further includes coupling a set of conductive straps to the movable electrically conductive structure. The set of conductive straps accommodates the movable electrically conductive structure when it is deployed and retracted while providing the RF current a low impedance path to ground.
Abstract:
A combined pressure control/plasma confinement assembly configured for confining a plasma and for at least partially regulating pressure in a plasma processing chamber during plasma processing of a substrate is provided. The assembly includes a movable plasma confinement structure having therein a plurality of perforations and configured to surround the plasma when deployed. The assembly also includes a movable pressure control structure disposed outside of the movable plasma confinement structure such that the movable plasma confinement structure is disposed between the plasma and the movable pressure control structure during the plasma processing, the movable pressure control structure being deployable and retractable along with the movable plasma confinement structure to facilitate handling of the substrate, the movable pressure control structure being independently movable relative to the movable plasma confinement structure to regulate the pressure by blocking at least a portion of the plurality of perforations.