摘要:
A brake system includes a friction coupling having organically or inorganically bound metal-containing, sintered-metal-containing and/or CFC-containing brake linings and a brake disc of fiber-reinforced C/SiC ceramic composite material. A friction layer and/or a surface of the brake disc subject to friction has a proportion of SiC greater than 65% and material compositions in a core region and a surface region of the brake disc are different. The brake system may be used in motor vehicles, rail vehicles or aircraft.
摘要:
Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 μm to 800 μm, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
摘要:
Process for producing hollow bodies comprising fibre-reinforced ceramic materials, where cores whose shape corresponds to that of the hollow spaces are produced in a first step, a green body is produced in a second step by introducing the abovementioned cores and a press moulding compound into a mould, where the press moulding compound comprises carbon fibres and/or carbon threads and pitch and/or resins, the green body is cured in a third step by heating under pressure, and then carbonised in a fourth step by heating in the absence of oxidants to form a C/C body, which latter can be infiltrated with liquid metal with retention of its shape in a fifth step, with at least partial formation of carbides, where the cores comprise a material which is non-meltable but undergoes at least sufficient shrinkage above the curing temperature of the shaping by pressing of the press moulding compound for the shrunken core to be able to be taken out from the carbonised body; hollow bodies produced by this process and also their use as brake disks, clutch disks and friction disks
摘要:
Process for protecting fiber-reinforced, carbon-containing composites whose matrix comprises, at least in the outer layer, silicon carbide (SiC) and also silicon (Si) and/or silicon alloys against oxidation, which comprises the steps a) impregnation of the composite with an aqueous, phosphate-containing solution, b) drying, c) heat treatment at a temperature which is at least sufficient to convert the dried solution into insoluble compounds which are suitable for forming a self-healing glass, wherein the composite is treated oxidatively to form silicon oxide (SiO2) either prior to step a), between steps a) and b) or during or after step b) and/or c).
摘要:
Process for producing shaped bodies comprising fiber-reinforced ceramic materials, where a green body is produced in a first step by introducing a press moulding composition into a mold, where the press moulding composition comprises carbon fibers and/or carbon filaments and pitch and/or resins which, when treated thermally and with the exclusion of oxidizing agents, form carbon-containing residues, the green body is cured in a second step by heating to a temperature of from 120° C. to 280° C. under pressure, the cured green body, also referred to as intermediate body, is carbonized in a third step by heating in a nonoxidizing atmosphere to a temperature of from about 750° C. to about 1100° C. to form a C/C body, wherein heating in the first, second and/or third step is at least partly effected by an electric current being passed through the pressable composition, the green body and/or the cured green body, shaped bodies produced according to this process and their use as brake disks, clutch disks and friction disks
摘要:
Clutch linings comprising fiber-reinforced ceramic materials which contain short carbon fibers and whose matrix has a mass fraction of at least 40% of silicon carbide, process for producing them and their use in clutch systems, in particular for motor vehicles
摘要:
A multilayer ceramic composite is described which contains at least one supporting zone having oxidation-sensitive reinforcing fibers as well as a matrix. The matrix optionally contains oxidation-sensitive components. The composite further contains at least one surface layer, as well as at least one additional protective layer disposed between the supporting zone and surface layer, and whose matrix is composed substantially of at least one component of the matrix of the supporting zone or cover layer. The protective layer further contains additives that form self-healing layers.
摘要:
Protection products and armored products made of a fiber-reinforced composite material with a ceramic matrix, include a protection element for partial or complete absorption of at least one impact-like load focussed at a point. The protection element has a body having at least one dimension at least equal to 3 cm, in a direction perpendicular to a load to be absorbed. The body includes a fiber-reinforced composite material having a ceramic matrix with at least 10% by weight of silicon carbide and having reinforcing fibers. At least 5% by weight of the reinforcing fibers are carbon fibers and/or graphite fibers.
摘要:
A composition comprising polymer-bound fiber tows containing carbon fibers, the polymer-bound fiber tows having an average length of 3 mm to 50 mm measured in the fiber direction, and an average bundle thickness of 0.1 mm to 10 mm measured perpendicular to the fiber direction, and in which at least 75% of all polymer-bound fiber tows have a length that is at least 90% and not greater than 110% of the average length combined with a carbon-ceramic material.
摘要:
Process for producing bodies from ceramic materials using silicon carbide, comprising the steps: configuration of fiber-reinforced porous bodies (1, 5) that consist of carbon on a base (2) that is inert relative to liquid silicon, the bodies having cavities (3) that are accessible from the exterior or surface recesses (3′), and the cavities (3) being closed at the bottom in the porous bodies or the surface recesses (3′) together with the base (2) forming a reservoir that is sealed at the bottom; heating the configuration by introduction of energy to melt the silicon (6) that is present in the reservoir; and infiltrating the melted silicon in the bodies (1, 5) and reaction of the silicon with the carbon to form silicon carbide; and use of the thus produced bodies as brake disks and as clutch driving disks.