Abstract:
Systems and methods for cleaning emitter electrodes of air conditioner systems are provided. The air conditioning system includes an emitter electrode, a collector electrode and a high voltage generator to provide a high voltage potential difference between the emitter and collector electrodes. The system also includes a cleaning member having a channel through which the emitter electrode passes. A plunger mechanism and a spring, or a lever and a fulcrum, are used to force the cleaning member to travel upward along the emitter electrode to thereby frictionally removing debris from the emitter electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
Abstract:
An air conditioning device comprises a substantially thin collector electrode capable of forming ions at a front and/or rear edge when charged. The thin collector electrode preferably having an insulating material disposed on the front and/or rear edge to prevent ions from being emitted therefrom. The collector electrode capable of being in the form of a thin elongated blade whereby an emitter electrode is upstream of the front edge or alternatively downstream of the front edge. The collector electrode alternatively in the form of a cylindrical structure or a porous grid having a plurality of air passageway cells therethrough.
Abstract:
Systems and methods for cleaning emitter electrodes of air conditioner systems are provided. The air conditioning system includes an emitter electrode, a collector electrode and a high voltage generator to provide a high voltage potential difference between the emitter and collector electrodes. The system also includes a cleaning member having a channel through which the emitter electrode passes. A plunger mechanism and a spring, or a lever and a fulcrum, are used to force the cleaning member to travel upward along the emitter electrode to thereby frictionally removing debris from the emitter electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
Abstract:
Systems and methods for cleaning emitter electrodes of air conditioner systems are provided. The air conditioning system includes an emitter electrode, a collector electrode and a high voltage generator to provide a high voltage potential difference between the emitter and collector electrodes. The system also includes a cleaning member having a channel through which the emitter electrode passes. A plunger mechanism and a spring, or a lever and a fulcrum, are used to force the cleaning member to travel upward along the emitter electrode to thereby frictionally removing debris from the emitter electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
Abstract:
Embodiments of the present invention are related to air conditioner systems and methods. In accordance with one embodiment of the present invention, a system includes at least one emitter electrode and at least one collector electrode that is downstream from the emitter electrode. The emitter electrode has a plurality of pins axially arranged about a center. Preferably, the pins are arranged in a circle about the center. A driver electrode is located within the interior of the collector electrode. Preferably, although not necessarily, the driver electrode is insulated. A high voltage source provides a voltage potential to at least one of the emitter electrode and the collector electrode to thereby provide a potential difference therebetween. The embodiments as described herein have some or all of the advantages of increasing the particle collection efficiency, increasing the rate and/or volume of airflow, reducing arcing, and/or reducing the amount of ozone generated.
Abstract:
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes a pin emitter electrode and a ring collector electrode located downstream from the emitter electrode. A driver electrode, which is preferably insulated, is located at least partially within an interior of said ring collector electrode. A high voltage source provides a voltage potential to at least one of said emitter electrode and said collector electrode to thereby provide a potential difference therebetween. The driver electrode may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
An air conditioner device includes a housing, a first electrode disposed in the housing, and a second electrode removably disposed in the housing. The second electrode can be manually removed from the housing and then manually returned to a resting position within the housing. A base member is attached to a bottom portion of the second electrode. An at least partially flexible cleaning member is attached to the base member. The cleaning member frictionally cleans the first electrode when, after being removed from the housing, the second electrode is manually returned to the resting position within the housing.
Abstract:
A high capacity motorized rack holds a plurality of jewel case enclosed CDs in holders flexibly inter-connectable with each other to form a rotatable continuous loop. The loop is rotatably retained within a vertical rack housing and is driven by a motor, disposed within the housing, under user control such that the loop is rotated until a desired CD is moved to the top region of the belt. A rack may hold two or more such loops of inter-connected holders. In one embodiment a holder retains a single jewel case, and comprises two independent loops that are rotated with a single motor. A preferred embodiment employs inter-connectable holders that each retain two jewel cases in a side-by-side configuration. A lamp and/or barcode scanner may be disposed on the housing for ease of CD selection. The housing base preferably is detached during shipping to permit transporting the rack in a smaller volume container. User control can include voice commands to direct loop rotation and speed.
Abstract:
An air conditioner with a cleaning member having an opening, through which a wire-like electrode passes. The member is moved along the wire to frictionally clean the wire-like electrode when a collector electrode array is moved. A lifting arm is mounted to the collector electrode. The lifting arm can move the member to clean the wire-like electrode as the collector electrode is moved (e.g., removed from the air conditioner for cleaning).
Abstract:
An electro-kinetic electro-static air conditioner includes a mechanism to clean the wire-like electrodes in the first electrode array. A length of flexible Mylar type sheet material projects from the base of the second electrode array towards and beyond the first electrode array. The distal end of each sheet includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material may be biasedly pivotably attached to the base of the second electrode array, and may be urged away from and parallel to the wire-like electrodes when the conditioner is in use. Another embodiment includes a bead-like member having a through opening or channel, through which the wire-like electrode passes. As the conditioner is turned upside down and rightside up, friction between the opening in the bead-like member and wire-like electrode cleans the electrode surface. The bead-like member may be made of ceramic, glass, or even metal. The through channel may be symmetrically formed in the bead-like member, but preferably will be asymmetrical to create a mechanical moment and increased friction with the surface of the wire-like electrode being cleaned.