Abstract:
It is described a method for dynamically optimizing the signal-to-noise ratio of attenuation data related to two different X-ray energies for reconstructing an image of an object under examination. The method comprises (a) estimating the thickness and the material composition of the object at a plurality of different projection angles, (b) for each of the various projection angles calculating for a variety of combinations of different first and second X-ray energies a corresponding common signal-to-noise ratio, (c) for each of the various projection angles choosing the first and the second X-ray energy causing the maximum corresponding common signal-to-noise ratio, and (d) for each of the various projection angles acquiring X-ray attenuation data of the object whereby the two X-ray energies are the X-ray energies causing a maximum signal-to-noise ratio assigned to the respective projection angle.
Abstract:
A device (1) for imaging the interior of an optically turbid medium is provided. The device comprises a receptacle (3; 103) structured to accommodate an optically turbid medium for examination and an optically matching medium filling a space between an inner surface (6; 106) of the receptacle (3; 103) and the optically turbid medium. The device comprises at least one light source generating light to be coupled into the receptacle (3; 103) and at least one detector for detecting light emanating from the receptacle (3; 103). A coupling surface (10; 110) optically coupled to the inner surface (6; 106) of the receptacle and a coupling member (11; 111) optically coupled to the light source and the detector are provided. The coupling surface (10; 110) and the coupling member (11; 111) are movable to a plurality of different positions relative to each other and structured to establish an optical connection from the light source to the inner surface (6; 106) of the receptacle and from the inner surface (6; 106) of the receptacle to the at least one detector in the plurality of different positions.
Abstract:
It is described a method for dynamically optimizing the signal-to-noise ratio of attenuation data related to two different X-ray energies for reconstructing an image of an object under examination. The method comprises (a) estimating the thickness and the material composition of the object at a plurality of different projection angles, (b) for each of the various projection angles calculating for a variety of combinations of different first and second X-ray energies a corresponding common signal-to-noise ratio, (c) for each of the various projection angles choosing the first and the second X-ray energy causing the maximum corresponding common signal-to-noise ratio, and (d) for each of the various projection angles acquiring X-ray attenuation data of the object whereby the two X-ray energies are the X-ray energies causing a maximum signal-to-noise ratio assigned to the respective projection angle.
Abstract:
A radiographic imaging apparatus includes a radiation detector (16) and a radiation source (12) which projects a non-parallel beam of radiation into field of view (14). A footprint of each voxel (v) which is projected on the detector (16) is corrected based on the position of the voxel (v) in the field of view (14) in relation to the radiation detector (16) and the radiation source (12). The contributions from substantially parallel redundant projections are further combined based on a fractional distance frac from a center point (82) of the voxel (v) to a center of each of the adjacent redundant projections.
Abstract:
The invention relates to a system, a medical image acquisition system, and a method for imaging an interior of a turbid medium (25). The invention also relates to a marker (60) for use in the method for imaging an interior of a turbid medium (25). The system, the medical image acquisition system, and the method may be used for obtaining an image of an interior of a turbid medium (25) by: accommodation of a turbid medium (25) inside a receiving volume (20); irradiation of the receiving volume (20) with light from a light source; detection of light emanating from the receiving volume (20) as a result of irradiating the receiving volume (20) with light from the light source through the use of a photodetector unit. The detected light is then used to reconstruct an image of an interior of the turbid medium (25). According to the invention, the system, the medical acquisition system, and the method are adapted such that during a measurement the receiving volume (20) comprises at least one marker (60) comprising a predetermined concentration of a chosen fluorescent agent. The light source is arranged for generating excitation light that causes fluorescent emission in the marker (60) and the photodetector is arranged to detect light emanating from the receiving volume (20) as a result of irradiating the receiving volume (20) with excitation light. The use of a marker (60) according to the invention enables obtaining information relating to the geometry of the turbid medium (25). If the turbid medium (25) comprises an unknown concentration of a second fluorescent agent, and the light source and the photodetector unit are arranged for causing fluorescence in the second fluorescent agent and detecting the resulting fluorescence light, respectively, the use of a marker (60) according to the invention enables calibration of the signal resulting from this fluorescence light.
Abstract:
The invention relates to a computer tomography method with a circular relative movement between the beam source and an iterative reconstruction method suitable therefor. The reconstruction method is substantially improved by deriving the first approximation image from a CT image, which is obtained from a prior acquisition during helical relative movement.
Abstract:
The reconstruction of images of an object of interest may introduce artifacts along lines of high gradients of absorption values. According to an exemplary embodiment of the present invention, these artifacts may efficiently be removed by a statistical weighing during reconstruction of the image. Advantageously, according to an aspect of the present invention, the reconstruction of the image may be performed iteratively, wherein the updates are weighted with the intrinsic statistical error of the measured photon counts. This may lead to an efficient removal of artifacts.
Abstract:
The invention relates to an examination apparatus with an X-ray device (10) for circular or helical cone-beam CT acquisition of projections images (Pi(E1), Pi(E2)) of a patient (1) with different energy spectra (E1, E2) and/or with an energy-resolved detection. By a combination of the projections, images (Ibone,i, Itissue,i) can be calculated that show predominantly the bone structure and the soft tissue, respectively. Therefore, a 3D model (Mbone) of the bone structure and a 3D model (Mtissue) of the tissue can be reconstructed separately. After removal of artifacts from the bone-structure model (Mbone), both separate 3D models can be integrated to a combined model (M) of the body volume with a high image quality.
Abstract:
A computer tomography apparatus (100) for examination of an object of interest (107), the computer tomography apparatus (100) comprising detecting elements (123) adapted to detect electromagnetic radiation coherently scattered from an object of interest (107) in an energy-resolving manner, and a determination unit (118) adapted to determine structural information concerning the object of interest (107) based on a statistical analysis of detecting signals received from the detecting elements (123).
Abstract:
A computed tomography system includes an x-ray source (108) that rotates about and emits radiation through an imaging region (116). At least one finite energy resolution detector (112) detects the emitted radiation. The at least one finite resolution detector (112) includes a plurality of sub-detectors (204). Each of the plurality of sub-detectors (204) is associated with one or more different energy thresholds. Each of the energy thresholds is used to count a number of incident photons based on a corresponding energy level. A reconstruction system (136) reconstructs the photon counts to generate one or more images of a subject residing within the imaging region (116).